scholarly journals An Insightful Overview of the Wiener Filter for System Identification

2021 ◽  
Vol 11 (17) ◽  
pp. 7774
Author(s):  
Laura-Maria Dogariu ◽  
Jacob Benesty ◽  
Constantin Paleologu ◽  
Silviu Ciochină

Efficiently solving a system identification problem represents an important step in numerous important applications. In this framework, some of the most popular solutions rely on the Wiener filter, which is widely used in practice. Moreover, it also represents a benchmark for other related optimization problems. In this paper, new insights into the regularization of the Wiener filter are provided, which is a must in real-world scenarios. A proper regularization technique is of great importance, especially in challenging conditions, e.g., when operating in noisy environments and/or when only a low quantity of data is available for the estimation of the statistics. Different regularization methods are investigated in this paper, including several new solutions that fit very well for the identification of sparse and low-rank systems. Experimental results support the theoretical developments and indicate the efficiency of the proposed techniques.

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3199
Author(s):  
Hasnat Bin Tariq ◽  
Naveed Ishtiaq Chaudhary ◽  
Zeshan Aslam Khan ◽  
Muhammad Asif Zahoor Raja ◽  
Khalid Mehmood Cheema ◽  
...  

Most real-time systems are nonlinear in nature, and their optimization is very difficult due to inherit stiffness and complex system representation. The computational intelligent algorithms of evolutionary computing paradigm (ECP) effectively solve various complex, nonlinear optimization problems. The differential evolution algorithm (DEA) is one of the most important approaches in ECP, which outperforms other standard approaches in terms of accuracy and convergence performance. In this study, a novel application of a recently proposed variant of DEA, the so-called, maximum-likelihood-based, adaptive, differential evolution algorithm (ADEA), is investigated for the identification of nonlinear Hammerstein output error (HOE) systems that are widely used to model different nonlinear processes of engineering and applied sciences. The performance of the ADEA is evaluated by taking polynomial- and sigmoidal-type nonlinearities in two case studies of HOE systems. Moreover, the robustness of the proposed scheme is examined for different noise levels. Reliability and consistent accuracy are assessed through multiple independent trials of the scheme. The convergence, accuracy, robustness and reliability of the ADEA are carefully examined for HOE identification in comparison with the standard counterpart of the DEA. The ADEA achieves the fitness values of 1.43 × 10−8 and 3.46 × 10−9 for a population size of 80 and 100, respectively, in the HOE system identification problem of case study 1 for a 0.01 nose level, while the respective fitness values in the case of DEA are 1.43 × 10−6 and 3.46 × 10−7. The ADEA is more statistically consistent but less complex when compared to the DEA due to the extra operations involved in introducing the adaptiveness during the mutation and crossover. The current study may consider the approach of effective nonlinear system identification as a step further in developing ECP-based computational intelligence.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1790
Author(s):  
Jacob Benesty ◽  
Constantin Paleologu ◽  
Laura-Maria Dogariu ◽  
Silviu Ciochină

System identification problems are always challenging to address in applications that involve long impulse responses, especially in the framework of multichannel systems. In this context, the main goal of this review paper is to promote some recent developments that exploit decomposition-based approaches to multiple-input/single-output (MISO) system identification problems, which can be efficiently solved as combinations of low-dimension solutions. The basic idea is to reformulate such a high-dimension problem in the framework of bilinear forms, and to then take advantage of the Kronecker product decomposition and low-rank approximation of the spatiotemporal impulse response of the system. The validity of this approach is addressed in terms of the celebrated Wiener filter, by developing an iterative version with improved performance features (related to the accuracy and robustness of the solution). Simulation results support the main theoretical findings and indicate the appealing performance of these developments.


2020 ◽  
Vol 961 (7) ◽  
pp. 2-7
Author(s):  
A.V. Zubov ◽  
N.N. Eliseeva

The authors describe a software suite for determining tilt degrees of tower-type structures according to ground laser scanning indication. Defining the tilt of the pipe is carried out with a set of measured data through approximating the sections by circumferences. They are constructed using one of the simplest search engine optimization methods (evolutionary algorithm). Automatic filtering the scan of the current section from distorting data is performed by the method of assessing the quality of models constructed with that of least squares. The software was designed using Visual Basic for Applications. It contains several blocks (subprograms), with each of them performing a specific task. The developed complex enables obtaining operational data on the current state of the object with minimal user participation in the calculation process. The software suite is the result of practical implementing theoretical developments on the possibilities of using search methods at solving optimization problems in geodetic practice.


2021 ◽  
Vol 52 (1) ◽  
pp. 12-15
Author(s):  
S.V. Nagaraj

This book is on algorithms for network flows. Network flow problems are optimization problems where given a flow network, the aim is to construct a flow that respects the capacity constraints of the edges of the network, so that incoming flow equals the outgoing flow for all vertices of the network except designated vertices known as the source and the sink. Network flow algorithms solve many real-world problems. This book is intended to serve graduate students and as a reference. The book is also available in eBook (ISBN 9781316952894/US$ 32.00), and hardback (ISBN 9781107185890/US$99.99) formats. The book has a companion web site www.networkflowalgs.com where a pre-publication version of the book can be downloaded gratis.


2021 ◽  
Vol 128 (1) ◽  
Author(s):  
Sebastian Blauth ◽  
Christian Leithäuser ◽  
René Pinnau

AbstractWe consider the optimization of a chemical microchannel reactor by means of PDE-constrained optimization techniques, using the example of the Sabatier reaction. To model the chemically reacting flow in the microchannels, we introduce a three- and a one-dimensional model. As these are given by strongly coupled and highly nonlinear systems of partial differential equations (PDEs), we present our software package cashocs which implements the adjoint approach and facilitates the numerical solution of the subsequent optimization problems. We solve a parameter identification problem numerically to determine necessary kinetic parameters for the models from experimental data given in the literature. The obtained results show excellent agreement to the measurements. Finally, we present two optimization problems for optimizing the reactor’s product yield. First, we use a tracking-type cost functional to maximize the reactant conversion, keep the flow rate of the reactor fixed, and use its wall temperature as optimization variable. Second, we consider the wall temperature and the inlet gas velocity as optimization variables, use an objective functional for maximizing the flow rate in the reactor, and ensure the quality of the product by means of a state constraint. The results obtained from solving these problems numerically show great potential for improving the design of the microreactor.


2021 ◽  
pp. 1-21
Author(s):  
Chu-Min Li ◽  
Zhenxing Xu ◽  
Jordi Coll ◽  
Felip Manyà ◽  
Djamal Habet ◽  
...  

The Maximum Satisfiability Problem, or MaxSAT, offers a suitable problem solving formalism for combinatorial optimization problems. Nevertheless, MaxSAT solvers implementing the Branch-and-Bound (BnB) scheme have not succeeded in solving challenging real-world optimization problems. It is widely believed that BnB MaxSAT solvers are only superior on random and some specific crafted instances. At the same time, SAT-based MaxSAT solvers perform particularly well on real-world instances. To overcome this shortcoming of BnB MaxSAT solvers, this paper proposes a new BnB MaxSAT solver called MaxCDCL. The main feature of MaxCDCL is the combination of clause learning of soft conflicts and an efficient bounding procedure. Moreover, the paper reports on an experimental investigation showing that MaxCDCL is competitive when compared with the best performing solvers of the 2020 MaxSAT Evaluation. MaxCDCL performs very well on real-world instances, and solves a number of instances that other solvers cannot solve. Furthermore, MaxCDCL, when combined with the best performing MaxSAT solvers, solves the highest number of instances of a collection from all the MaxSAT evaluations held so far.


2021 ◽  
Author(s):  
Mohammad Shehab ◽  
Laith Abualigah

Abstract Multi-Verse Optimizer (MVO) algorithm is one of the recent metaheuristic algorithms used to solve various problems in different fields. However, MVO suffers from a lack of diversity which may trapping of local minima, and premature convergence. This paper introduces two steps of improving the basic MVO algorithm. The first step using Opposition-based learning (OBL) in MVO, called OMVO. The OBL aids to speed up the searching and improving the learning technique for selecting a better generation of candidate solutions of basic MVO. The second stage, called OMVOD, combines the disturbance operator (DO) and OMVO to improve the consistency of the chosen solution by providing a chance to solve the given problem with a high fitness value and increase diversity. To test the performance of the proposed models, fifteen CEC 2015 benchmark functions problems, thirty CEC 2017 benchmark functions problems, and seven CEC 2011 real-world problems were used in both phases of the enhancement. The second step, known as OMVOD, incorporates the disruption operator (DO) and OMVO to improve the accuracy of the chosen solution by giving a chance to solve the given problem with a high fitness value while also increasing variety. Fifteen CEC 2015 benchmark functions problems, thirty CEC 2017 benchmark functions problems and seven CEC 2011 real-world problems were used in both phases of the upgrade to assess the accuracy of the proposed models.


Sign in / Sign up

Export Citation Format

Share Document