scholarly journals Design of an Integrated Sub-6 GHz and mmWave MIMO Antenna for 5G Handheld Devices

2021 ◽  
Vol 11 (18) ◽  
pp. 8331
Author(s):  
Hassan Khalid ◽  
Wahaj Abbas Awan ◽  
Musa Hussain ◽  
Adeela Fatima ◽  
Mudassir Ali ◽  
...  

The reported work demonstrates the design and realization of an integrated mid-band (sub-6 GHz) and mmWave multiple input, multiple output (MIMO) antenna for 5G handheld devices. The proposed prototype consists of the two-port MIMO configuration of the mid-band antenna placed at the top and bottom of the substrate, while the 4-port mmWave MIMO antenna is placed sideways. The MIMO configuration at the top and bottom consists of a two-element array to achieve high gain at the mid-band spectrum, while the antennas placed sideways are optimized to cover the 5G-mmWave band spectrum. The overall dimensions of the board were selected the same as the of smartphones, i.e., 151 mm × 72 mm. The mid-band antenna has an operational bandwidth of 2.73 GHz, whereas the mmWave antenna has an impedance bandwidth of 3.85 GHz with a peak gain of 5.29 and 8.57 dBi, respectively. Furthermore, the design is analyzed for the various MIMO performance parameters; it was found that the proposed antennas offer high performance in terms of envelop correlation coefficient (ECC), diversity gain (DG), mean effective gain (MEG) and channel capacity loss (CCL) within operational range. A fabricated prototype was tested and measured results show strong agreement with predicted results. Moreover, the proposed work is compared with state-of-the-art work for the same applications to demonstrate its potential for targeted application.


Author(s):  
Yusnita Rahayu ◽  
Indah Permata Sari ◽  
Dara Incam Ramadhan ◽  
Razali Ngah

This article presented a millimeter wave antenna which operated at 38 GHz for 5G mobile base station. The MIMO (Multiple Input Multiple Output) antenna consisted of 1x10 linear array configurations. The proposed antenna’s size was 88 x 98 mm^2  and printed on 1.575 mm-thick Rogers Duroid 5880 subsrate with dielectric constant of ε_r= 2.2 and loss tangent (tanδ) of 0.0009. The antenna array covered along the azimuth plane to provide the coverage to the users in omnidirection. The simulated results showed that the single element antenna had the reflection coefficient (S11) of -59 dB, less than -10 dB in the frequency range of 35.5 - 39.6 GHz. More than 4.1 GHz of impedance bandwidth was obtained. The gain of the antenna linear array was 17.8 dBi while the suppression of the side lobes was -2.7 dB.  It showed a high array gain throughout the impedance bandwidth with overall of VSWR were below 1.0646. It designed using CST microwave studio.



Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 994 ◽  
Author(s):  
Li ◽  
Wei ◽  
Tan ◽  
Lei ◽  
Wu ◽  
...  

A planar flexibly extensible multiple-input–multiple-output (MIMO) antenna array with a self-isolation property is proposed. The main characteristics of the proposed array are: (i) no extra isolation structure is required to improve isolation between elements; (ii) elements are arranged with each other with a spacing of 0 mm, (iii) the configuration can be flexibly extended to a large antenna array according to actual requirements. For a test example, the practical processing and testing of an eight-element array is conducted. The tested results demonstrate that the proposed design possesses wide impedance bandwidth (IBW) of 65% and very good isolation (>18 dB) across the operating bandwidth, which match well with the simulated ones. Moreover, envelope correlation coefficient (ECC) is calculated to valuate MIMO performance; an acceptable ECC (lower than 0.05) suggests that the proposed configuration has good diversity performance and can be a potential candidate for MIMO communications.



Frequenz ◽  
2020 ◽  
Vol 74 (1-2) ◽  
pp. 17-23
Author(s):  
Robert Mark ◽  
Soma Das

AbstractIn this paper, near zero parameter based metamaterial superstrate is presented for mutual coupling reduction in multiple-input-multiple-output (MIMO) antenna. The proposed design offers a peak isolation of 38 dB with edge-separation of 0.042λ0 at resonating frequency. To verify the simulations results, a prototype of the proposed antenna is fabricated and experimentally measured. The two elements MIMO is designed with measured impedance bandwidth of 5.6 to 5.95 GHz with a peak measured gain of 7.4 dBi and efficiency above 95 %.The measurement established an isolation enhancement of 30 dB with minimum correlation coefficient of 0.05 within operating band. The proposed method offers a good design technique for high gain and closely packed MIMO antenna system for WLAN applications.



2017 ◽  
Vol 10 (3) ◽  
pp. 360-367 ◽  
Author(s):  
Sonika Priyadarsini Biswal ◽  
Sushrut Das

A compact printed quadrant shaped monopole antenna is introduced in this paper as a good prospect for ultra wideband- multiple-input multiple-output (UWB-MIMO) system. The proposed MIMO antenna comprises two perpendicularly oriented monopoles to employ polarization diversity. An open circuit folded stub is extended from the ground plane of each radiating element to enhance the impedance bandwidth satisfying the UWB criteria. Two ‘L’ shaped slots are further etched on the radiator to provide good isolation performance between two radiators. The desirable radiator performances and diversity performances are ensured by simulation and/or measurement of the reflection coefficient, radiation pattern, realized peak gain, envelope correlation coefficient (ECC), diversity gain, mean effective gain (MEG) ratio and channel capacity loss (CCL). Results indicate that the proposed antenna exhibits 2.9–11 GHz 10 dB return loss bandwidth, mutual coupling <−20 dB, ECC < 0.003, MEG ratio ≈ 1, and CCL < 0.038 Bpsec/Hz, making it a good candidate for UWB and MIMO diversity application.



2015 ◽  
Vol 6 (3) ◽  
pp. 1-15 ◽  
Author(s):  
Wan Noor Najwa Wan Marzudi ◽  
Zuhairiah Zainal Abidin ◽  
Siti Zarina Mohd Muji ◽  
Yue Ma ◽  
Raed A. Abd-Alhameed

This paper presented a planar printed multiple-input-multiple-output (MIMO) antenna with a dimension of 100 x 45 mm2. It composed of two crescent shaped radiators placed symmetrically with respect to the ground plane. Neutralization line applied to suppress mutual coupling. The proposed antenna examined both theoretically and experimentally, which achieves an impedance bandwidth of 18.67% (over 2.04-2.46 GHz) with a reflection coefficient < -10 dB and mutual coupling minimization of < -20 dB. An evaluation of MIMO antennas is presented, with analysis of correlation coefficient, total active reflection coefficient (TARC), capacity loss and channel capacity. These characteristics indicate that the proposed antenna suitable for some wireless applications.



2016 ◽  
Vol 9 (3) ◽  
pp. 573-580 ◽  
Author(s):  
Garima Srivastava ◽  
B. K. Kanuijia ◽  
Rajeev Paulus

A compact printed 2 × 2 ultrawideband (UWB) multiple input multiple output (MIMO) antenna with a single circular patch as a common radiator for both the antenna elements is presented in this paper. A single circular patch is excited by two tapered CPW feeds for dual polarization. To improve the isolation between two ports, a rectangular slot of dimension L1 × W1 is created in the radiator. The UWB MIMO antenna has impedance bandwidth of 3–12 GHz with a isolation better than 17 dB between the two ports. The envelope correlation coefficient and the capacity loss are evaluated to ensure the good diversity performance of UWB MIMO antenna. The antenna has a compact size of 45 × 45 mm2 and is fabricated on low cost FR4 substrate and measured using Agilent VNA. The simulated and measured results show that the proposed UWB antenna is good candidate for UWB MIMO applications.



2019 ◽  
Vol 16 (10) ◽  
pp. 4242-4248
Author(s):  
Manoj Kapil ◽  
Manish Sharma

In this research article, a compact MIMO (Multiple-Input-Multiple-Output) antenna with inclusion of two notched bands characteristics is presented. Designed MIMO antenna consist of dual radiating patches printed on one surface of the substrate which covers measured wide impedance bandwidth of 2.88 GHz–19.98 GHz and satisfies bandwidth ratio more than 10:1 for superwideband with compact size of 18 mm × 34 mm. Two radiating patch are placed symmetrically for MIMO configuration and notched bands to eliminate WiMAX/C and WLAN bands are obtained by attaching inverted T-shaped stub on radiating patch and etched inverted U-shape slit in microstrip feed. Isolation between the two radiating patch is maintained by adding two L-shaped stub in slotted rectangular ground plane. Measured radiation pattern are stable in operating band and offers maximum 4.23 dBi and 89% gain and radiation efficiency respectively. Moreover, antenna shows good diversity performance with Envelope-Correlation-Coefficient (ECC) < 0.5, Directive-Gain (DG) > 9.95 dB and Total-Active-Reflection Coefficient (TARC) < -30 dB.



Author(s):  
Muhsin Muhsin ◽  
Afina Lina Nurlaili ◽  
Aulia Saharani ◽  
Indah Rahmawti Utami

<span>Massive internet of things (IoT) in 5G has many advantages as a future technology. It brings some challenges such as a lot of devices need massive connection. In this case, multiple-input multiple-output (MIMO) systems offer high performance and capacity of communications. There is a challenge of correlation between antennas in MIMO. This paper proposes three-sectors MIMO base station antenna for 5G-New Radio (5G-NR) band N77 with dual polarized configuration to reduce the correlation. The proposed antenna has a maximum coupling of -16.90 dB and correlation below 0.01. The obtained bit error rate (BER) performance is very close to non-correlated antennas with bandwidth of 1.87 GHz. It means that the proposed antenna has been well designed.</span>



2018 ◽  
Vol 11 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Sanjay Chouhan ◽  
Debendra Kumar Panda ◽  
Vivek Singh Kushwah ◽  
Pankaj Kumar Mishra

AbstractA four-element wide-band octagonal ring-shaped antenna is proposed for human interface device and S-band applications. The isolation structure comprises a parasitic element and a T-shaped structure. The antenna has −10 dB impedance bandwidth 63% (2.1–4.0 GHz) with miniaturized dimension of 54.98 mm × 76 mm. The multiple input multiple output (MIMO) antenna gain is 2.83 dBi at the 2.4 GHz resonant frequency. The designed MIMO has envelop correlation coefficient of 0.026 in the 2:1 VSWR band. The −10 dB total active reflection coefficient bandwidth of 1.2 GHz has been achieved in the entire frequency band, and has MEG value of ≤−3 dB. The specific absorption rate has found below the safety limit near the human head, palm and wrist.



Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5610
Author(s):  
Sachin Kumar ◽  
Gwan Hui Lee ◽  
Dong Hwi Kim ◽  
Hyun Chul Choi ◽  
Kang Wook Kim

A broadband compact-sized planar four-port multiple-input–multiple-output (MIMO) antenna with polarization diversity is presented. The proposed dual circularly polarized (CP) MIMO antenna consists of four G-shaped monopole elements, two of which are left-hand CP and the other two are right-hand CP. A vertical line strip in the G-shaped radiating element acts in balancing the vertical and horizontal electric field components to obtain 90° phase difference between them for circular polarization. Also, an I-shaped strip is incorporated between the ground planes of the G-shaped antenna elements to obtain equal voltage level in the proposed MIMO configuration. The dual circular polarization mechanism of the proposed MIMO/diversity antenna is analysed from the vector current distributions. The impedance bandwidth (S11 ≤ –10 dB) of the MIMO antenna is 105.9% (4–13 GHz) and the 3 dB axial ratio bandwidth (ARBW) is 67.7% (4.2–8.5 GHz), which is suitable for C-band applications. The overall size of the MIMO antenna is 70 × 68 × 1.6 mm3, and the minimum isolation between the resonating elements is 18 dB. The envelope correlation coefficient is less than 0.25, and the peak gain within the resonating band is 6.4 dBi.



Sign in / Sign up

Export Citation Format

Share Document