scholarly journals Severe Reduction of Energy Availability in Controlled Conditions Causes Poor Endurance Performance, Impairs Explosive Power and Affects Hormonal Status in Trained Male Endurance Athletes

2021 ◽  
Vol 11 (18) ◽  
pp. 8618
Author(s):  
Iva Jurov ◽  
Nicola Keay ◽  
Samo Rauter

The aim of this study was to severely reduce energy availability (EA) in controlled conditions in trained male endurance athletes to observe any effects on health, performance, and psychological and energy markers. EA was reduced by 50% over 14 days in athletes by maintaining identical energy intake and increasing exercise energy expenditure. Blood was drawn, performance was measured by three specific tests (endurance, explosive power and agility) and two psychological questionnaires were used. Reduced EA (17.3 ± 5.0 kcal/kg FFM/day) resulted in lower body fat% (t(12) = 3.36, p = 0.006), lower power output and relative power output (t(12) = 2.69, p = 0.021 t(12) = 2.34, p = 0.036), explosive power was reduced (t(12) = 6.41, p = 0.000), lactate metabolism was altered (p = 0.001). EA was negatively correlated with haemoglobin and testosterone (r = −0.557, p = 0.30 and r = −0.532, p = 0.037), anaerobic threshold (r = −0.597, p = 0.02) and respiratory compensation point (r = −0.575, p = 0.025). There were significant differences in Well-being (t(12) = 4.11, p = 0.002) and the Three Factor Eating Questionnaire (t(12) = −2.71, p = 0.020). This is the first study to demonstrate that endurance performance and explosive power can be affected before detrimental health effects occur in male athletes. Drastic reductions of EA could lead to poor eating behaviours. The two psychological questionnaires seem to be more sensitive to EA changes than blood markers.

Author(s):  
Iva Jurov ◽  
Nicola Keay ◽  
Darjan Spudić ◽  
Samo Rauter

Abstract Purpose Low energy availability in males needs more original research to understand its health and performance consequences. The aim of the study was to induce low energy availability in previously healthy male endurance athletes by reducing energy availability by 25% for 14 consecutive days and measure any potential changes in performance, health, mental state or energy markers. Methods Energy availability was reduced in 12 trained, well-trained and elite endurance athletes by increasing energy expenditure and controlling energy intake. After intervention, health was assessed by blood draw, body composition was measured, energy markers by measuring resting energy expenditure, performance with three specific tests (measuring endurance, agility and explosive power) and two questionnaires were used for psychological assessment (the Three Factor Eating Questionnaire and Well-being questionnaire). Results Reduced energy availability (22.4 ± 6.3 kcal/kg FFM/day) caused significantly lower haemoglobin values (t(12) = 2.652, p = 0.022), there was a tendency for lower iron and IGF-1 (p = 0.066 and p = 0.077, respectively). Explosive power was reduced (t(12) = 4.570, p = 0.001), lactate metabolism was altered and athletes reported poorer well-being (t(12) = 2.385, p = 0.036). Cognitive restriction was correlated with energy availability (r = 0.528, p = 0.039). Conclusion This is the first research providing direct evidence that suboptimal energy availability negatively impacts explosive power before hormonal changes occur in male endurance athletes. It is also the first to show direct association of low energy availability and higher cognitive restriction. We also observed worse well-being and lower haemoglobin values. 25% of energy availability reduction as not enough to elicit changes in resting energy expenditure.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 491
Author(s):  
Aslı Devrim-Lanpir ◽  
Lee Hill ◽  
Beat Knechtle

Endurance athletes need a regular and well-detailed nutrition program in order to fill their energy stores before training/racing, to provide nutritional support that will allow them to endure the harsh conditions during training/race, and to provide effective recovery after training/racing. Since exercise-related gastrointestinal symptoms can significantly affect performance, they also need to develop strategies to address these issues. All these factors force endurance athletes to constantly seek a better nutritional strategy. Therefore, several new dietary approaches have gained interest among endurance athletes in recent decades. This review provides a current perspective to five popular diet approaches: (a) vegetarian diets, (b) high-fat diets, (c) intermittent fasting diets, (d) gluten-free diet, and (e) low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diets. We reviewed scientific studies published from 1983 to January 2021 investigating the impact of these popular diets on the endurance performance and health aspects of endurance athletes. We also discuss all the beneficial and harmful aspects of these diets, and offer key suggestions for endurance athletes to consider when following these diets.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
David Varillas Delgado ◽  
Juan José Tellería Orriols ◽  
Carlos Martín Saborido

Abstract Background The genetic profile that is needed to define an endurance athlete has been studied during recent years. The main objective of this work is to approach for the first time the study of genetic variants in liver-metabolizing genes and their role in endurance performance by comparing the allelic and genotypic frequencies in elite endurance athletes to the non-athlete population. Methods Genotypic and allelic frequencies were determined in 123 elite endurance athletes (75 professional road cyclists and 48 endurance elite runners) and 122 male non-athlete subjects (sedentary). Genotyping of cytochrome P450 family 2 subfamily D member 6 (CYP2D6 rs3892097), glutathione-S transferase mu isoform 1 (GSTM1), glutathione S-transferase pi (GSTP rs1695) and glutathione S-transferase theta (GSTT) genes was performed by polymerase chain reaction (PCR). The combination of the polymorphisms for the “optimal” polygenic profile has been quantified using the genotype score (GS). Results Statistical differences were found in the genetic distributions between elite endurance athletes and non-athletes in CYP2D6 (p < 0.001) and GSTT (p = 0.014) genes. The binary logistic regression model showed a favourable OR (odds ratio) of being an elite endurance runner against a professional road cyclist (OR: 2.403, 95% CI: 1.213–4.760 (p = 0.002)) in the polymorphisms studied. Conclusions Genotypic distribution of liver-metabolizing genes in elite endurance athletes is different to non-athlete subjects, with a favourable gene profile in elite endurance athletes in terms of detoxification capacity.


Author(s):  
Karine Schaal ◽  
Marta D VanLoan ◽  
Christophe Hausswirth ◽  
Gretchen A Casazza

Low energy availability (EA) suppresses many physiological processes, including ovarian function in female athletes. Low EA could also predispose athletes to develop a state of overreaching. This study compared the changes in ad libitum energy intake (EI), exercise energy expenditure (ExEE), and EA among runners completing a training overload (TO) phase. We tested the hypothesis that runners becoming overreached would show decreased EA, suppressed ovarian function and plasma leptin, compared to well-adapted (WA) runners. After 1 menstrual cycle (baseline), 16 eumenorrheic runners performed 4 weeks of TO followed by a 2-week recovery (131±3% and 63±6% of baseline running volume respectively). Seven-day ExEE, EI, running performance (RUNPERF) and plasma [leptin] were assessed for each phase. Salivary [estradiol] was measured daily. Urinary [luteinizing hormone] tests confirmed ovulation. Nine runners adapted positively to TO (WA,ΔRUNPERF: +4±2%); seven were non-functionally overreached (NFOR, ΔRUNPERF –9±2%) as RUNPERF remained suppressed after the recovery period. WA increased EI during TO, maintaining their baseline EA despite a large increase in ExEE (ΔEA=+1.9±1.3 kcal.kgFFM-1.d-1, P=0.17). By contrast, NFOR showed no change in EI, leading to decreased EA (ΔEA=-5.6±2.1 kcal.kgFFM-1.d-1, P=0.04). [Leptin]b, mid-cycle and luteal [estradiol]s decreased in NFOR only. Contrasting with WA, NFOR failed to maintain baseline EA during TO, resulting in poor performance outcomes and suppressed ovarian function.NCT02224976. NOVELTY BULLETS: -Runners adapting positively to training overload (TO) increased ad libitum energy intake, maintaining baseline EA and ovarian function through TO. -By contrast, NFOR runners failed to increase energy intake, showing suppressed EA and ovarian function during TO.


Author(s):  
Ed Maunder ◽  
Deborah K. Dulson ◽  
David M. Shaw

Purpose: Considerable interindividual heterogeneity has been observed in endurance performance responses following induction of a ketogenic diet (KD). It is plausible that a physiological stress response in the period following the dramatic dietary shift associated with transition to a KD may explain this heterogeneity. Methods: In a randomized, crossover study design, 8 trained male runners completed an incremental exercise test and ran to exhaustion at 70%VO2max before and after a 31-day rigorously controlled habitual diet or KD intervention, and recorded heart rate variability (root mean square of the sum of successive differences in R–R intervals [rMSSD]) upon waking each morning along with the recovery–stress questionnaire for athletes each week. Data were analyzed using linear mixed models. Results: A significant reduction in rMSSD was observed in the KD (−9.77 [4.03] ms, P = .02), along with an increase in day-to-day variability in rMSSD (2.1% [1.0%], P = .03). The reduction in rMSSD in the KD for the subgroup of individuals exhibiting impaired exercise capacity following induction of the KD approached significance (Δ −22 [15] ms, P = .06, N = 4); whereas no effect was observed in those who exhibited unchanged exercise capacity (Δ 5 [18] ms, P = .61, N = 4). No main effects were observed for recovery–stress questionnaire for athletes. Conclusions: Our data suggest those working with endurance athletes transitioning onto a KD may consider using noninvasive, inexpensive resting heart rate variability measures to gain individual-level insights into the likely short-term effects on exercise capacity.


2008 ◽  
Vol 42 (11) ◽  
pp. 568-571 ◽  
Author(s):  
H Kuipers ◽  
G A C V. Hullenaar ◽  
B M Pluim ◽  
S E Overbeek ◽  
O De Hon ◽  
...  

2018 ◽  
Vol 13 (8) ◽  
pp. 1090-1096 ◽  
Author(s):  
Ida A. Heikura ◽  
Louise M. Burke ◽  
Dan Bergland ◽  
Arja L.T. Uusitalo ◽  
Antti A. Mero ◽  
...  

Purpose: The authors investigated the effects of sex, energy availability (EA), and health status on the change in hemoglobin mass (ΔHbmass) in elite endurance athletes over ∼3–4 wk of live-high–train-high altitude training in Flagstaff, AZ (2135 m; n = 27 women; n = 21 men; 27% 2016 Olympians). Methods: Precamp and postcamp Hbmass (optimized carbon monoxide rebreathing method) and iron status were measured, EA was estimated via food and training logs, and a Low Energy Availability in Females Questionnaire (LEAFQ) and a general injury/illness questionnaire were completed. Hypoxic exposure (h) was calculated with low (<500 h), moderate (500–600 h), and high (>600 h) groupings. Results: Absolute and relative percentage ΔHbmass was significantly greater in women (6.2% [4.0%], P < .001) than men (3.2% [3.3%], P = .008). %ΔHbmass showed a dose–response with hypoxic exposure (3.1% [3.8%] vs 4.9% [3.8%] vs 6.8% [3.7%], P = .013). Hbmasspre was significantly higher in eumenorrheic vs amenorrheic women (12.2 [1.0] vs 11.3 [0.5] g/kg, P = .004). Although statistically underpowered, %ΔHbmass was significantly less in sick (n = 4, −0.5% [0.4%]) vs healthy (n = 44, 5.4% [3.8%], P < .001) athletes. There were no significant correlations between self-reported iron intake, sex hormones, or EA on Hbmass outcomes. However, there was a trend for a negative correlation between LEAFQ score and %ΔHbmass (r = −.353, P = .07). Conclusions: The findings confirm the importance of baseline Hbmass and exposure to hypoxia on increases in Hbmass during altitude training, while emphasizing the importance of athlete health and indices of EA on an optimal baseline Hbmass and hematological response to hypoxia.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3262 ◽  
Author(s):  
Thomas Egger ◽  
Joelle Leonie Flueck

Background: Low energy availability (LEA) is a major problem as athletes often restrict their energy intake. It has been shown that LEA occurs often in female and endurance athletes and in athletes from weight-sensitive or aesthetic sports. The purpose of this study was to investigate energy availability (EA) in elite wheelchair athletes. Methods: Fourteen elite wheelchair athletes (8 males; 6 females) participated. Data were collected using a weighed seven-day food and training diary to estimate energy intake and exercise energy expenditure. Resting energy expenditure and body composition were measured, whereas energy balance (EB) was calculated. Results: Measured over 7 days, EA was significantly different (36.1 ± 6.7 kcal kg−1 FFM day−1) in male compared to female (25.1 ± 7.1 kcal kg−1 FFM day−1) athletes (p < 0.001). From all analyzed days, LEA occurred in 73% of the days in female athletes and in 30% of the days in male athletes. EB was positive in male athletes (+169.1 ± 304.5 kcal) and negative (−288.9 ± 304.8 kcal) in female athletes. Conclusions: A higher prevalence of LEA was found in female compared to male athletes. A higher energy intake would be recommended to meet energy needs and to maximize training adaptation.


2020 ◽  
Vol 15 (1) ◽  
pp. 146-150
Author(s):  
Ed Maunder ◽  
Andrew E. Kilding ◽  
Christopher J. Stevens ◽  
Daniel J. Plews

A common practice among endurance athletes is to purposefully train in hot environments during a “heat stress camp.” However, combined exercise-heat stress poses threats to athlete well-being, and therefore, heat stress training has the potential to induce maladaptation. This case study describes the monitoring strategies used in a successful 3-week heat stress camp undertaken by 2 elite Ironman triathletes, namely resting heart rate variability, self-report well-being, and careful prescription of training based on previously collected physiological data. Despite the added heat stress, training volume very likely increased in both athletes, and training load very likely increased in one of the athletes, while resting heart rate variability and self-report well-being were maintained. There was also some evidence of favorable metabolic changes during routine laboratory testing following the camp. The authors therefore recommend that practitioners working with endurance athletes embarking on a heat stress training camp consider using the simple strategies employed in the present case study to reduce the risk of maladaptation and nonfunctional overreaching.


Author(s):  
Theresa Schörkmaier ◽  
Yvonne Wahl ◽  
Christian Brinkmann ◽  
Wilhelm Bloch ◽  
Patrick Wahl

AbstractRecent studies have shown that the oxygenated hemoglobin level can be enhanced during rest through the application of nonivamide-nicoboxil cream. However, the effect of nonivamide-nicoboxil cream on oxygenation and endurance performance under hypoxic conditions is unknown. Therefore, the purpose of this study was to investigate the effects of nonivamide-nicoboxil cream on local muscle oxygenation and endurance performance under normoxic and hypoxic conditions. In a cross-over design, 13 athletes (experienced cyclists or triathletes [age: 25.2±3.5 years; VO2max 62.1±7.3 mL·min−1·kg−1]) performed four incremental exercise tests on the cycle ergometer under normoxic or hypoxic conditions, either with nonivamide-nicoboxil or placebo cream. Muscle oxygenation was recorded with near-infrared spectroscopy. Capillary blood samples were taken after each step, and spirometric data were recorded continuously. The application of nonivamide-nicoboxil cream increased muscle oxygenation at rest and during different submaximal workloads as well as during physical exhaustion, irrespective of normoxic or hypoxic conditions. Overall, there were no significant effects of nonivamide-nicoboxil on peak power output, maximal oxygen uptake or lactate concentrations. Muscle oxygenation is significantly higher with the application of nonivamide-nicoboxil cream. However, its application does not increase endurance performance.


Sign in / Sign up

Export Citation Format

Share Document