scholarly journals Granular Stack Density’s Influence on Homogeneous Fluidization Regime: Numerical Study Based on EDEM-CFD Coupling

2021 ◽  
Vol 11 (18) ◽  
pp. 8696
Author(s):  
Aboubacar Sidiki Drame ◽  
Li Wang ◽  
Yanping Zhang

FLUENT and EDEM were applied to simulate liquid–solid coupling in a 3D homogenous fluidization. The dynamics of destabilization of the granular material immersed by homogeneous fluidization were observed. The effect of initial packing density of granular stack and fluidization rate on the fluidization’s transient regime, the configuration of particles in the fluidized bed and the variation of bed height were analyzed and discussed. According to the results, there was an original observation of a strong impact of the initial density of an initially static granular stack on the transient fluidization regime. Depending on the material initial volume fraction, there was a difference in grain dynamics. For an initially loose stack, a homogeneous turbulent fluidization was observed, whereas for an initially dense stack, there was a mass takeoff of the stack. The propagation of wave porosity instability, from the bottom to the top of the stack with fast kinetics that decompacted the medium, followed this mass takeoff.

Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 80
Author(s):  
Yuria Okagaki ◽  
Taisuke Yonomoto ◽  
Masahiro Ishigaki ◽  
Yoshiyasu Hirose

Many thermohydraulic issues about the safety of light water reactors are related to complicated two-phase flow phenomena. In these phenomena, computational fluid dynamics (CFD) analysis using the volume of fluid (VOF) method causes numerical diffusion generated by the first-order upwind scheme used in the convection term of the volume fraction equation. Thus, in this study, we focused on an interface compression (IC) method for such a VOF approach; this technique prevents numerical diffusion issues and maintains boundedness and conservation with negative diffusion. First, on a sufficiently high mesh resolution and without the IC method, the validation process was considered by comparing the amplitude growth of the interfacial wave between a two-dimensional gas sheet and a quiescent liquid using the linear theory. The disturbance growth rates were consistent with the linear theory, and the validation process was considered appropriate. Then, this validation process confirmed the effects of the IC method on numerical diffusion, and we derived the optimum value of the IC coefficient, which is the parameter that controls the numerical diffusion.


2008 ◽  
Vol 20 (11) ◽  
pp. 111701 ◽  
Author(s):  
M. Pailha ◽  
M. Nicolas ◽  
O. Pouliquen

Author(s):  
Adam C. Gladen ◽  
Susan C. Mantell ◽  
Jane H. Davidson

A thermotropic material is modeled as an absorbing, thin slab containing anisotropic scattering, monodisperse, spherical particles. Monte Carlo ray tracing is used to solve the governing equation of radiative transfer. Predicted results are validated by comparison to the measured normal-hemispherical reflectance and transmittance of samples with various volume fraction and relative index of refraction. A parametric study elucidates the effects of particle size parameter, scattering albedo, and optical thickness on the normal-hemispherical transmittance, reflectance, and absorptance. The results are interpreted for a thermotropic material used for overheat protection of a polymer solar absorber. For the preferred particle size parameter of 2, the optical thickness should be less than 0.3 to ensure high transmittance in the clear state. To significantly reduce the transmittance and increase the reflectance in the translucent state, the optical thickness should be greater than 2.5 and the scattering albedo should be greater than 0.995. For optical thickness greater than 5, the reflectance is asymptotic and any further reduction in transmittance is through increased absorptance. A case study is used to illustrate how the parametric study can be used to guide the design of thermotropic materials. Low molecular weighted polyethylene in poly(methyl methacrylate) is identified as a potential thermotropic material. For this material and a particle radius of 200 nm, it is determined that the volume fraction and thickness should equal 10% and 1 mm, respectively.


Author(s):  
Ajay Vallabh ◽  
P.S. Ghoshdastidar

Abstract This paper presents a steady-state heat transfer model for the natural convection of mixed Newtonian-Non-Newtonian (Alumina-Water) and pure Non-Newtonian (Alumina-0.5 wt% Carboxymethyl Cellulose (CMC)/Water) nanofluids in a square enclosure with adiabatic horizontal walls and isothermal vertical walls, the left wall being hot and the right wall cold. In the first case the nanofluid changes its Newtonian character to Non-Newtonian past 2.78% volume fraction of the nanoparticles. In the second case the base fluid itself is Non-Newtonian and the nanofluid behaves as a pure Non-Newtonian fluid. The power-law viscosity model has been adopted for the non-Newtonian nanofluids. A finite-difference based numerical study with the Stream function-Vorticity-Temperature formulation has been carried out. The homogeneous flow model has been used for modelling the nanofluids. The present results have been extensively validated with earlier works. In Case I the results indicate that Alumina-Water nanofluid shows 4% enhancement in heat transfer at 2.78% nanoparticle concentration. Following that there is a sharp decline in heat transfer with respect to that in base fluid for nanoparticle volume fractions equal to and greater than 3%. In Case II Alumina-CMC/Water nanofluid shows 17% deterioration in heat transfer with respect to that in base fluid at 1.5% nanoparticle concentration. An enhancement in heat transfer is observed for increase in hot wall temperature at a fixed volume fraction of nanoparticles, for both types of nanofluid.


2012 ◽  
Vol 693 ◽  
pp. 345-366 ◽  
Author(s):  
L. Jibuti ◽  
S. Rafaï ◽  
P. Peyla

AbstractIn this paper, we conduct a numerical investigation of sheared suspensions of non-colloidal spherical particles on which a torque is applied. Particles are mono-dispersed and neutrally buoyant. Since the torque modifies particle rotation, we show that it can indeed strongly change the effective viscosity of semi-dilute or even more concentrated suspensions. We perform our calculations up to a volume fraction of 28 %. And we compare our results to data obtained at 40 % by Yeo and Maxey (Phys. Rev. E, vol. 81, 2010, p. 62501) with a totally different numerical method. Depending on the torque orientation, one can increase (decrease) the rotation of the particles. This results in a strong enhancement (reduction) of the effective shear viscosity of the suspension. We construct a dimensionless number $\Theta $ which represents the average relative angular velocity of the particles divided by the vorticity of the fluid generated by the shear flow. We show that the contribution of the particles to the effective viscosity can be suppressed for a given and unique value of $\Theta $ independently of the volume fraction. In addition, we obtain a universal behaviour (i.e. independent of the volume fraction) when we plot the relative effective viscosity divided by the relative effective viscosity without torque as a function of $\Theta $. Finally, we show that a modified Faxén law can be equivalently established for large concentrations.


Author(s):  
Mehdi Elhimer ◽  
Aboulghit El Malki Alaoui ◽  
Kilian Croci ◽  
Céline Gabillet ◽  
Nicolas Jacques

The phenomenon of slamming on a bubbly liquid has many occurrences in marine and costal engineering. However, experimental or numerical data on the effect of the presence of gas bubbles within the liquid on the impact loads are scarce and the related physical mechanisms are poorly understood. The aim of the present paper is to study numerically the relationship between the void volume fraction and the impact loads. For that purpose, numerical simulations of the impact of a cone on bubbly water have been performed using the finite element code ABAQUS/Explicit. The present results show the diminution of the impact loads with the increase of the void fraction. This effect appears to be related to the high compressibility of the liquid-gas mixture.


2021 ◽  
Vol 5 (9) ◽  
pp. 234
Author(s):  
Marwane Rouway ◽  
Mourad Nachtane ◽  
Mostapha Tarfaoui ◽  
Nabil Chakhchaoui ◽  
Lhaj El Hachemi Omari ◽  
...  

Biocomposites based on thermoplastic polymers and natural fibers have recently been used in wind turbine blades, to replace non-biodegradable materials. In addition, carbon nanofillers, including carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs), are being implemented to enhance the mechanical performance of composites. In this work, the Mori–Tanaka approach is used for homogenization of a polymer matrix reinforced by CNT and GNP nanofillers for the first homogenization, and then, for the second homogenization, the effective matrix was used with alfa and E-glass isotropic fibers. The objective is to study the influence of the volume fraction Vf and aspect ratio AR of nanofillers on the elastic properties of the composite. The inclusions are considered in a unidirectional and random orientation by using a computational method by Digimat-MF/FE and analytical approaches by Chamis, Hashin–Rosen and Halpin–Tsai. The results show that CNT- and GNP-reinforced nanocomposites have better performance than those without reinforcement. Additionally, by increasing the volume fraction and aspect ratio of nanofillers, Young’s modulus E increases and Poisson’s ratio ν decreases. In addition, the composites have enhanced mechanical characteristics in the longitudinal orientation for CNT- reinforced polymer and in the transversal orientation for GNP-reinforced polymer.


2021 ◽  
pp. 57-57
Author(s):  
Zakaria Lafdaili ◽  
Sakina El-Hamdani ◽  
Abdelaziz Bendou ◽  
Karim Limam ◽  
Bara El-Hafad

In this work we study numerically the three-dimensional turbulent natural convection in a partially heated cubic cavity filled with water containing metallic nanoparticles, metallic oxides and others based on carbon.The objective is to study and compare the effect of the addition of nanoparticles studied in water and also the effect of the position of the heated partition on the heat exchange by turbulent natural convection in this type of geometry, which can significantly improve the design of heat exchange systems for better space optimization. For this we have treated numerically for different volume fractions the turbulent natural convection in the two cases where the cavity is heated respectively by a vertical and horizontal strip in the middle of one of the vertical walls. To take into account the effects of turbulence, we used the standard turbulence model ? - ?. The governing equations are discretized by the finite volume method using the power law scheme which offers a good stability characteristic in this type of flow. The results are presented in the form of isothermal lines and current lines. The variation of the mean Nusselt number is calculated for the two positions of the heated partition as a function of the volume fraction of the nanoparticles studied in water for different Rayleigh numbers.The results show that carbon-based nanoparticles intensify heat exchange by convection better and that the position of the heated partition significantly influences heat exchange by natural convection. In fact, an improvement in the average Nusselt number of more than 20% is observed for the case where the heated partition is horizontal.


Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 664 ◽  
Author(s):  
Ammar Alsabery ◽  
Muneer Ismael ◽  
Ali Chamkha ◽  
Ishak Hashim

This numerical study considers the mixed convection and the inherent entropy generated in Al 2 O 3 –water nanofluid filling a cavity containing a rotating conductive cylinder. The vertical walls of the cavity are wavy and are cooled isothermally. The horizontal walls are thermally insulated, except for a heat source segment located at the bottom wall. The dimensionless governing equations subject to the selected boundary conditions are solved numerically using the Galerkin finite-element method. The study is accomplished by inspecting different ranges of the physical and geometrical parameters, namely, the Rayleigh number ( 10 3 ≤ R a ≤ 10 6 ), angular rotational velocity ( 0 ≤ Ω ≤ 750 ), number of undulations ( 0 ≤ N ≤ 4 ), volume fraction of Al 2 O 3 nanoparticles ( 0 ≤ ϕ ≤ 0.04 ), and the length of the heat source ( 0.2 ≤ H ≤ 0.8 ) . The results show that the rotation of the cylinder boosts the rate of heat exchange when the Rayleigh number is less than 5 × 10 5 . The number of undulations affects the average Nusselt number for a still cylinder. The rate of heat exchange increases with the volume fraction of the Al 2 O 3 nanoparticles and the length of the heater segment.


2021 ◽  
Author(s):  
Mingshan Sun ◽  
Zhiwen Gan

Abstract The hydrogen addition is a potential way to reduce the soot emission of aviation kerosene. The current study analyzed the effect of hydrogen addition on aviation kerosene (Jet A1) soot formation in a laminar flame at elevated pressure to obtain a fundamental understanding of the reduced soot formation by hydrogen addition. The soot formation of flame was simulated by CoFlame code. The soot formation of kerosene-nitrogen-air, (kerosene + replaced hydrogen addition)-nitrogen-air, (kerosene + direct hydrogen addition)-nitrogen-air and (kerosene + direct nitrogen addition)-nitrogen-air laminar flames were simulated. The calculated pressure includes 1, 2 and 5 atm. The hydrogen addition increases the peak temperature of Jet A1 flame and extends the height of flame. The hydrogen addition suppresses the soot precursor formation of Jet A1 by physical dilution effect and chemical inhibition effect, which weaken the poly-aromatic hydrocarbon (PAH) condensation process and reduce the soot formation. The elevated pressure significantly accelerates the soot precursor formation and increases the soot formation in flame. Meanwhile, the ratio of reduced soot volume fraction to base soot volume fraction by hydrogen addition decreases with the increase of pressure, indicating that the elevated pressure weakens the suppression effect of hydrogen addition on soot formation in Jet A1 flame.


Sign in / Sign up

Export Citation Format

Share Document