scholarly journals Declining Effect of Precipitation on the Normalized Difference Vegetation Index of Grasslands in the Inner Mongolian Plateau, 1982–2010

2021 ◽  
Vol 11 (18) ◽  
pp. 8766
Author(s):  
Yanan Li ◽  
Dan Wu ◽  
Liangyan Yang ◽  
Tiancai Zhou

Grasslands play an irreplaceable role in maintaining carbon balance and stabilizing the entire Earth’s ecosystem. Although the grasslands in Inner Mongolia are sensitive and vulnerable to climate change, a generalized effect of climate change on the grasslands is still unavailable. In this study, we analyzed the effects of annual mean precipitation and annual mean temperature on the normalized difference vegetation index from 1982 to 2010 on the Inner Mongolia Plateau. Our results indicated that the normalized difference vegetation index was mostly affected by precipitation, followed by temperature. Spatially, temperature and precipitation had greater effects on normalized difference vegetation index in dry regions than in wet ones. In time series, the effect of precipitation on normalized difference vegetation index had significantly decreased from 1982 to 2010 (R2 = 0.11, p > 0.05). However, the effect of temperature on normalized difference vegetation index remained stable. The high variation effect of precipitation on normalized difference vegetation index was due to the significant decrease in precipitation from 1980 to 2010. Thus, 35.47% and 0.56% of the dynamic of normalized difference vegetation index from 1982 to 2010 was accounted for by the precipitation and temperature, respectively. Our findings highlighted that grasslands are adaptable to the significant increase in temperature, but are sensitive to the decrease in precipitation on the Inner Mongolia Plateau.

2020 ◽  
Vol 12 (8) ◽  
pp. 1332 ◽  
Author(s):  
Linghui Guo ◽  
Liyuan Zuo ◽  
Jiangbo Gao ◽  
Yuan Jiang ◽  
Yongling Zhang ◽  
...  

An understanding of the response of interannual vegetation variations to climate change is critical for the future projection of ecosystem processes and developing effective coping strategies. In this study, the spatial pattern of interannual variability in the growing season normalized difference vegetation index (NDVI) for different biomes and its relationships with climate variables were investigated in Inner Mongolia during 1982–2015 by jointly using linear regression, geographical detector, and geographically weighted regression methodologies. The result showed that the greatest variability of the growing season NDVI occurred in typical steppe and desert steppe, with forest and desert most stable. The interannual variability of NDVI differed monthly among biomes, showing a time gradient of the largest variation from northeast to southwest. NDVI interannual variability was significantly related to that of the corresponding temperature and precipitation for each biome, characterized by an obvious spatial heterogeneity and time lag effect marked in the later period of the growing season. Additionally, the large slope of NDVI variation to temperature for desert implied that desert tended to amplify temperature variations, whereas other biomes displayed a capacity to buffer climate fluctuations. These findings highlight the relationships between vegetation variability and climate variability, which could be used to support the adaptive management of vegetation resources in the context of climate change.


2019 ◽  
Vol 11 (3) ◽  
pp. 768 ◽  
Author(s):  
Xinxia Liu ◽  
Zhixiu Tian ◽  
Anbing Zhang ◽  
Anzhou Zhao ◽  
Haixin Liu

By using the Global Inventory Modeling and Mapping Studies (GIMMS) third-generation normalized difference vegetation index (NDVI3g) data, this paper explores the spatiotemporal variations in vegetation and their relationship with temperature and precipitation between 1982 and 2015 in the Inner Mongolia region of China. Based on yearly scale data, the vegetation changes in Inner Mongolia have experienced three stages from 1982 to 2015: the vegetation activity kept a continuous improvement from 1982–1999, then downward between 1999–2009, and upward from 2009 to 2015. On the whole, the general trend is increasing. Several areas even witnessed significant vegetation increases: in the east and south of Tongliao and Chifeng, north of Xing’anmeng, north and west of Hulunbir, and in the west of Inner Mongolia. Based on monthly scale data, one-year and half-year cycles exist in normalized difference vegetation index (NDVI) and temperature but only a one-year cycle in precipitation. Finally, based on the one-year cycle, the relationship between NDVI and climatic were studied; NDVI has a significant positive correlation with temperature and precipitation, and temperature has a greater effect in promoting vegetation growth than precipitation. Moreover, based on a half-year changing period, NDVI is only affected by temperature in the study region. Those findings can serve as a critical reference for grassland managers or policy makers to make informed decisions on grassland management.


2020 ◽  
Vol 12 (24) ◽  
pp. 4119
Author(s):  
Shupu Wu ◽  
Xin Gao ◽  
Jiaqiang Lei ◽  
Na Zhou ◽  
Yongdong Wang

The ecological system of the desert/grassland biome transition zone is fragile and extremely sensitive to climate change and human activities. Analyzing the relationships between vegetation, climate factors (precipitation and temperature), and human activities in this zone can inform us about vegetation succession rules and driving mechanisms. Here, we used Landsat series images to study changes in the normalized difference vegetation index (NDVI) over this zone in the Sahel region of Africa. We selected 6315 sampling points for machine-learning training, across four types: desert, desert/grassland biome transition zone, grassland, and water bodies. We then extracted the range of the desert/grassland biome transition zone using the random forest method. We used Global Inventory Monitoring and Modelling Studies (GIMMS) data and the fifth-generation atmospheric reanalysis of the European Centre for Medium-Range Weather Forecasts (ERA5) meteorological assimilation data to explore the spatiotemporal characteristics of NDVI and climatic factors (temperature and precipitation). We used the multiple regression residual method to analyze the contributions of human activities and climate change to NDVI. The cellular automation (CA)-Markov model was used to predict the spatial position of the desert/grassland biome transition zone. From 1982 to 2015, the NDVI and temperature increased; no distinct trend was found for precipitation. The climate change and NDVI change trends both showed spatial stratified heterogeneity. Temperature and precipitation had a significant impact on NDVI in the desert/grassland biome transition zone; precipitation and NDVI were positively correlated, and temperature and NDVI were negatively correlated. Both human activities and climate factors influenced vegetation changes. The contribution rates of human activities and climate factors to the increase in vegetation were 97.7% and 48.1%, respectively. Human activities and climate factors together contributed 47.5% to this increase. The CA-Markov model predicted that the area of the desert/grassland biome transition zone in the Sahel region will expand northward and southward in the next 30 years.


2021 ◽  
Vol 13 (17) ◽  
pp. 3516
Author(s):  
Jianfang Kang ◽  
Yaonan Zhang ◽  
Asim Biswas

Land degradation and development (LDD) has become an urgent global issue. Quick and accurate monitoring of LDD dynamics is key to the sustainability of land resources. By integrating normalized difference vegetation index (NDVI) and net primary productivity (NPP) based on the Euclidean distance method, a LDD index (LDDI) was introduced to detect LDD processes, and to explore its quantitative relationship with climate change and human activity in China from 1985 to 2015. Overall, China has experienced significant land development, about 45% of China’s mainland, during the study period. Climate change (temperature and precipitation) played limited roles in the affected LDD, while human activity was the dominant driving force. Specifically, LDD caused by human activity accounted for about 58% of the total, while LDD caused by climate change only accounted for 0.34% of the total area. Results from the present study can provide insight into LDD processes and their driving factors and promote land sustainability in China and around the world.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1755
Author(s):  
Shuo Wang ◽  
Chenfeng Cui ◽  
Qin Dai

Since the early 2000s, the vegetation cover of the Loess Plateau (LP) has increased significantly, which has been fully recorded. However, the effects on relevant eco-hydrological processes are still unclear. Here, we made an investigation on the changes of actual evapotranspiration (ETa) during 2000–2018 and connected them with vegetation greening and climate change in the LP, based on the remote sensing data with correlation and attribution analysis. Results identified that the average annual ETa on the LP exhibited an obvious increasing trend with the value of 9.11 mm yr−1, and the annual ETa trend was dominated by the changes of ETa in the third quarter (July, August, and September). The future trend of ETa was predicted by the Hurst exponent. Partial correlation analysis indicated that annual ETa variations in 87.8% regions of the LP were controlled by vegetation greening. Multiple regression analysis suggested that the relative contributions of potential evapotranspiration (ETp), precipitation, and normalized difference vegetation index (NDVI), to the trend of ETa were 5.7%, −26.3%, and 61.4%, separately. Vegetation greening has a close relationship with the Grain for Green (GFG) project and acts as an essential driver for the long-term development trend of water consumption on the LP. In this research, the potential conflicts of water demanding between the natural ecosystem and social-economic system in the LP were highlighted, which were caused by the fast vegetation expansion.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 286
Author(s):  
Sang-Jin Park ◽  
Seung-Gyu Jeong ◽  
Yong Park ◽  
Sang-hyuk Kim ◽  
Dong-kun Lee ◽  
...  

Climate change poses a disproportionate risk to alpine ecosystems. Effective monitoring of forest phenological responses to climate change is critical for predicting and managing threats to alpine populations. Remote sensing can be used to monitor forest communities in dynamic landscapes for responses to climate change at the species level. Spatiotemporal fusion technology using remote sensing images is an effective way of detecting gradual phenological changes over time and seasonal responses to climate change. The spatial and temporal adaptive reflectance fusion model (STARFM) is a widely used data fusion algorithm for Landsat and MODIS imagery. This study aims to identify forest phenological characteristics and changes at the species–community level by fusing spatiotemporal data from Landsat and MODIS imagery. We fused 18 images from March to November for 2000, 2010, and 2019. (The resulting STARFM-fused images exhibited accuracies of RMSE = 0.0402 and R2 = 0.795. We found that the normalized difference vegetation index (NDVI) value increased with time, which suggests that increasing temperature due to climate change has affected the start of the growth season in the study region. From this study, we found that increasing temperature affects the phenology of these regions, and forest management strategies like monitoring phenology using remote sensing technique should evaluate the effects of climate change.


2021 ◽  
Vol 14 ◽  
pp. 117862212110133
Author(s):  
Hadi Eskandari Damaneh ◽  
Meysam Jafari ◽  
Hamed Eskandari Damaneh ◽  
Marjan Behnia ◽  
Asadollah Khoorani ◽  
...  

Projections of future scenarios are scarce in developing countries where human activities are increasing and impacting land uses. We present a research based on the assessment of the baseline trends of normalized difference vegetation index (NDVI), precipitation, and temperature data for the Khuzestan Province, Iran, from 1984 to 2015 compiled from ground-based and remotely sensed sources. To achieve this goal, the Sen’s slope estimator, the Mann-Kendall test, and Pearson’s correlation test were used. After that, future trends in precipitation and temperature were estimated using the Canadian Earth System Model (CanESM2) model and were then used to estimate the NDVI trend for two future periods: from 2016 to 2046 and from 2046 to 2075. Our results showed that during the baseline period, precipitation decreased at all stations: 33.3% displayed a significant trend and the others were insignificant ones. Over the same period, the temperature increased at 66.7% of stations while NDVI decreased at all stations. The NDVI–precipitation relationship was positive while NDVI–temperature showed an inverse trend. During the first of the possible future periods and under the RCP2.6, RCP4.5, and RCP8.5 scenarios, NDVI and precipitation decreased, and temperatures significantly increased. In addition, the same trends were observed during the second future period; most of these were statistically significant. We conclude that much assessments are valuable and integral components of effective ecosystem planning and decisions.


2018 ◽  
Vol 42 (4) ◽  
pp. 415-430 ◽  
Author(s):  
Biao Zeng ◽  
Fuguang Zhang ◽  
Taibao Yang ◽  
Jiaguo Qi ◽  
Mihretab G Ghebrezgabher

Alpine sparsely vegetated areas (ASVAs) in mountains are sensitive to climate change and rarely studied. In this study, we focused on the response of ASVA distribution to climate change in the eastern Qilian Mountains (EQLM) from the 1990s to the 2010s. The ASVA distribution ranges in the EQLM during the past three decades were obtained from the Thematic Mapper remote sensing digital images by using the threshold of normalized difference vegetation index (NDVI) and artificial visual interpretation. Results indicated that the ASVA shrank gradually in the EQLM and lost its area by approximately 11.4% from the 1990s to the 2010s. The shrunken ASVA with markedly more area than the expanded one was mainly located at altitudes from 3700 m to 4300 m, which were comparatively lower than the average altitude of the ASVA distribution ranges. This condition led to the low ASVA boundaries in the EQLM moving upwards at a significant velocity of 22 m/decade at the regional scale. This vertical zonal process was modulated by topography-induced differences in local hydrothermal conditions. Thus, the ASVA shrank mainly in its lower parts with mild and sunny slopes. Annual maximum NDVI in the transition zone increased significantly and showed a stronger positive correlation with significantly increasing temperature than insignificant precipitation variations during 1990–2015. The ASVA shrinkage and up-shifting of its boundary were attributed to climate warming, which facilitated the upper part of alpine meadow in the EQLM by releasing the low temperature limitation on vegetation growth.


2021 ◽  
Vol 13 (2) ◽  
pp. 187
Author(s):  
Rui Sun ◽  
Shaohui Chen ◽  
Hongbo Su

As an important part of a terrestrial ecosystem, vegetation plays an important role in the global carbon-water cycle and energy flow. Based on the Global Inventory Monitoring and Modeling System (GIMMS) third generation of Normalized Difference Vegetation Index (NDVI3g), meteorological station data, climate reanalysis data, and land cover data, this study analyzed the climate dynamics of the spatiotemporal variations of vegetation NDVI in northern China from 1982 to 2015. The results showed that growth season NDVI (NDVIgs) increased significantly at 0.006/10a (p < 0.01) in 1982–2015 on the regional scale. The period from 1982 to 2015 was divided into three periods: the NDVIgs increased by 0.026/10a (p < 0.01) in 1982–1990, decreased by −0.002/10a (p > 0.1) in 1990–2006, and then increased by 0.021/10a (p < 0.01) during 2006–2015. On the pixel scale, the increases in NDVIgs during 1982–2015, 1982–1990, 1990–2006, and 2006–2015 accounted for 74.64%, 85.34%, 48.14%, and 68.78% of the total area, respectively. In general, the dominant climate drivers of vegetation growth had gradually switched from solar radiation, temperature, and precipitation (1982–1990) to precipitation and temperature (1990–2015). For woodland, high coverage grassland, medium coverage grassland, low coverage grassland, the dominant climate drivers had changed from temperature and solar radiation, solar radiation and precipitation, precipitation and solar radiation, solar radiation to precipitation and solar radiation, precipitation, precipitation and temperature, temperature and precipitation. The areas controlled by precipitation increased significantly, mainly distributed in arid, sub-arid, and sub-humid areas. The dominant climate drivers for vegetation growth in the plateau climate zone or high-altitude area changed from solar radiation to temperature and precipitation, and then to temperature, while in cold temperate zone, changed from temperature to solar radiation. These results are helpful to understand the climate dynamics of vegetation growth, and have important guiding significance for vegetation protection and restoration in the context of global climate change.


Sign in / Sign up

Export Citation Format

Share Document