scholarly journals Finite Element Analysis of Proposed Self-Locking Joint for Modular Steel Structures

2021 ◽  
Vol 11 (19) ◽  
pp. 9277
Author(s):  
Gohar Nadeem ◽  
Nor Azizi Safiee ◽  
Nabilah Abu Bakar ◽  
Izian Abd Karim ◽  
Noor Azline Mohd Nasir

The intermodular connection between modules plays a vital role in the overall performance of modular structures. The separation between a column and connection is possible due to the absence of links (welding or bolting) since limited space is available between modules. This study proposed a self-locking joint to be used in a modular steel structure, connecting columns with a connection without need of extra space between modules. The behavior of the proposed connection subjected to monotonic load was evaluated using a finite element approach using ABAQUS software. The influencing factors contributed to the behavior of the self-locking connection and columns observed using a parametric study. The parametric study was conducted by varying beam thickness, bolt pretension force and friction coefficient µ. Results indicate that the proposed connection can be classified as a semirigid connection according to Eurocode 3 and special moment frame (SMF) as recommended by AISC.

2011 ◽  
Vol 368-373 ◽  
pp. 1217-1221
Author(s):  
Yan Xia Zhang ◽  
Yun Peng Li ◽  
Lu Yao Wang ◽  
Fan Yang

Based on the previous experiments and theoretical analyses, finite element analyses (FEA) and parametric study on seismic behavior of Cover Plate Strengthen-Beam Flange Weaken Beam-to-Column (CPSBFW) connection are executed by using ABAQUS. Suggestions on design conceptions and details of the cover plate strengthen-beam flange weaken beam-to-column connection are presented in this paper, and that provide valuable reference for design of beam-to-column connections in steel structures.


2015 ◽  
Vol 9 (1) ◽  
pp. 724-735
Author(s):  
Bo Cheng ◽  
Zhenyu Wu

This paper presents a finite element analysis on the tensile stiffness of steel bolted connections which are fabricated from thin-walled cold-formed steel strips and their members. This type of bolted connection is usually used to assemble the diagonal bracing member in the light steel structure. Unlike the architectural steel structure, thin walled steel bolted connection cannot be simplified into a hinge joint due to the weak tensile stiffness of connection. The calculation of tensile stiffness of bolted connection is necessary to accurately evaluate the effectiveness of bracing system in the coldformed steel structure. Based on the existing test results and analysis results, finite element (FE) models with threedimensional solid elements were established to investigate the tensile stiffness of bolted connections between cold-formed steel plates under shear. The analysis with non-linear material and contact elements was carried out in order to predict the load-displacement relationships of bolted connections. Furthermore, a parametric study on single-bolted or two-bolted connections with different configurations was performed to study the relationship of connection tensile stiffness and structural parameters such as bolt diameter, plate thickness and steel yield strength. According to the stiffness results obtained from parametric study, six calculating equations for practical design of cold-formed steel bolted connection have been proposed. The calculation results of the stiffness equations are in a good correlation with those of FE analysis, and the proposed equations have been found to provide estimates of tensile stiffness of bolted connections with reasonable accuracy.


2020 ◽  
Vol 47 (10) ◽  
pp. 1175-1187
Author(s):  
G. Aruna ◽  
V. Karthika ◽  
S. Sukumar

This paper describes a finite element analysis (FEA) and design of cold-formed steel built-up closed sections with intermediate stiffeners in the flange and web under axial compression. A finite element model (FEM) was developed and validated using the available experimental results. The validated FEM can be used for further parametric study on strength of built-up closed columns. The results obtained from the parametric study are compared with the current direct strength method (DSM) in the North American specification of cold-formed steel structures for those specimens that failed by only local, distortional, and flexural buckling. It is shown that the current DSM is not quite suitable for the design of cold-formed steel built-up closed columns. Therefore, the improved design equations are proposed by modifying the current design equations used in the DSM for flexural, local, and distortional buckling. The reliability of current DSM and proposed DSM was assessed by reliability analysis.


2014 ◽  
Vol 945-949 ◽  
pp. 1139-1142
Author(s):  
Jin Li ◽  
Guang Sheng Ren

According to amonoral parking space in traverse table platform technology parameters requirements and structural characteristics, the use of Pro/e software established structure model and imported into the finite element analysis software analysis Workbench, steel structure of the static analysis. Calculated the steel structures in design load maximum deformation.The results show that, by pro/E a structure model and the calculation method is reasonable, the calculation is of high accuracy, profile choose the proper size, structure deformation meet the design requirements.


2012 ◽  
Vol 166-169 ◽  
pp. 1760-1764
Author(s):  
Song Yan Wang ◽  
Cheng Cheng Du ◽  
Jie Zhu

Due to the particularity, the reinforcement and reconstruction of steel structures should adopt a unique way. Combined with practical engineering, this paper introduces the program of Laizhou department store building reinforcement project. According to the specific requirements of the reinforcement and reconstruction, we analyze the original structure, introduce structure designs of the adding three layers as well as the reinforcement of bottom two layers, which makes construction more convenient and faster, and achieves the purpose of economic and appliance. The reinforcement of steel columns decide the period and cost. This paper expounds the reinforcement method of steel columns, and obtains the force of the bolt through the finite element analysis.


2021 ◽  
Vol 11 (2) ◽  
pp. 858
Author(s):  
Mara Terzini ◽  
Andrea Di Pietro ◽  
Alessandro Aprato ◽  
Stefano Artiaco ◽  
Alessandro Massè ◽  
...  

Acetabular fractures have a high impact on patient’s quality of life, and because acetabular fractures are high energy injuries, they often co-occur with other pathologies such as damage to cartilage that could increase related morbidity; thus, it appears of primary importance developing reliable treatments for this disease. This work aims at the evaluation of the biomechanical performances of non-conservative treatments of acetabular fractures through a finite element approach. Two pelvic plates models (the standard suprapectineal plate—SPP, and a suprapectineal quadrilateral surface buttressing plate—SQBP) were analyzed when implanted on transverse or T-shaped fractures. The plates geometries were adapted to the specific hemipelvis, mimicking the bending action that the surgeon performs on the plate intraoperatively. Implemented models were tested in a single leg stance condition. The obtained results show that using the SQBP plate in transverse and T-shaped acetabular fractures generates lower bone stress if compared to the SPP plate. Interfragmentary movement analysis shows that the SQBP plate guarantees greater stability in transverse fractures. In conclusion, the SQBP plate seems worthy of further clinical analysis, having resulted as a promising option in the treatment of transverse and T-shaped acetabular fractures, able to reduce bone stress values and to get performances comparable, and in some cases superior, to traditional fixation.


2011 ◽  
Vol 374-377 ◽  
pp. 2430-2436
Author(s):  
Gang Shi ◽  
Zhao Liu ◽  
Yong Zhang ◽  
Yong Jiu Shi ◽  
Yuan Qing Wang

High strength steel sections have been increasingly used in buildings and bridges, and steel angles have also been widely used in many steel structures, especially in transmission towers and long span trusses. However, high strength steel exhibits mechanical properties that are quite different from ordinary strength steel, and hence, the local buckling behavior of steel equal angle members under axial compression varies with the steel strength. However, there is a lack of research on the relationship of the local buckling behavior of steel equal angle members under axial compression with the steel strength. A finite element model is developed in this paper to analyze the local buckling behavior of steel equal angle members under axial compression, and study its relationship with the steel strength and the width-to-thickness ratio of the angle leg. The finite element analysis (FEA) results are compared with the corresponding design method in the American code AISC 360-05, which provides a reference for the related design.


Author(s):  
Nikhil Joshi ◽  
Pritha Ghosh ◽  
Jonathan Brewer ◽  
Lawrence Matta

Abstract API RP 1102 provides a method to calculate stresses in buried pipelines due to surface loads resulting from the encroachment of roads and railroads. The API RP 1102 approach is commonly used in the industry, and widely available software allows for quick and easy implementation. However, the approach has several limitations on when it can be used, one of which is that it is limited to pipelines crossing as near to 90° (perpendicular crossing) as practicable. In no case can the crossing be less than 30° . In this paper, the stresses in the buried pipeline under standard highway vehicular loading calculated using the API RP 1102 method are compared with the results of two other methods; an analytical method that accounts for longitudinal and circumferential through wall bending effects, and the finite element method. The benefit of the alternate analytical method is that it is not subject to the limitations of API RP 1102 on crossing alignment or depth. However, this method is still subject to the limitation that the pipeline is straight and at a uniform depth. The fact that it is analytical in nature allows for rapid assessment of a number of pipes and load configurations. The finite element analysis using a 3D soil box approach offers the greatest flexibility in that pipes with bends or appurtenances can be assessed. However, this approach is time consuming and difficult to apply to multiple loading scenarios. Pipeline crossings between 0° (parallel) and 90° (perpendicular) are evaluated in the assessment reported here, even though these are beyond the scope of API RP 1102. A comparison across the three methods will provide a means to evaluate the level of conservatism, if any, in the API RP 1102 calculation for crossing between 30° and 90° . It also provides a rationale to evaluate whether the API RP 1102 calculation can potentially be extended for 0° (parallel) crossings.


10.14311/1083 ◽  
2009 ◽  
Vol 49 (1) ◽  
Author(s):  
C. Crosti

This paper focuses on the structural analysis of a steel structure under fire loading. In this framework, the objective is to highlight the importance of the right choice of analyses to develop, and of the finite element codes able to model the resistance and stiffness reduction due to the temperature increase. In addition, the evaluation of the structural collapse under fire load of a real building is considered, paying attention to the global behavior of the structure itself. 


Sign in / Sign up

Export Citation Format

Share Document