scholarly journals Comparing Performances of CNN, BP, and SVM Algorithms for Differentiating Sweet Pepper Parts for Harvest Automation

2021 ◽  
Vol 11 (20) ◽  
pp. 9583
Author(s):  
Bongki Lee ◽  
Donghwan Kam ◽  
Yongjin Cho ◽  
Dae-Cheol Kim ◽  
Dong-Hoon Lee

For harvest automation of sweet pepper, image recognition algorithms for differentiating each part of a sweet pepper plant were developed and performances of these algorithms were compared. An imaging system consisting of two cameras and six halogen lamps was built for sweet pepper image acquisition. For image analysis using the normalized difference vegetation index (NDVI), a band-pass filter in the range of 435 to 950 nm with a broad spectrum from visible light to infrared was used. K-means clustering and morphological skeletonization were used to classify sweet pepper parts to which the NDVI was applied. Scale-invariant feature transform (SIFT) and speeded-up robust features (SURFs) were used to figure out local features. Classification performances of a support vector machine (SVM) using the radial basis function kernel and backpropagation (BP) algorithm were compared to classify local SURFs of fruits, nodes, leaves, and suckers. Accuracies of the BP algorithm and the SVM for classifying local features were 95.96 and 63.75%, respectively. When the BP algorithm was used for classification of plant parts, the recognition success rate was 94.44% for fruits, 84.73% for nodes, 69.97% for leaves, and 84.34% for suckers. When CNN was used for classifying plant parts, the recognition success rate was 99.50% for fruits, 87.75% for nodes, 90.50% for leaves, and 87.25% for suckers.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Rong Jia ◽  
Yongtao Xie ◽  
Hua Wu ◽  
Jian Dang ◽  
Kaisong Dong

Effectively extracting power transformer partial discharge (PD) signals feature is of great significance for monitoring power transformer insulation condition. However, there has been lack of practical and effective extraction methods. For this reason, this paper suggests a novel method for the PD signal feature extraction based on multidimensional feature region. Firstly, in order to better describe differences in each frequency band of fault signals, empirical mode decomposition (EMD) and Hilbert-Huang transform (HHT) band-pass filter wave for raw signal is carried out. And the component of raw signals on each frequency band can be obtained. Secondly, the sample entropy value and the energy value of each frequency band component are calculated. Using the difference of each frequency band energy and complexity, signals feature region is established by the multidimensional energy parameters and the multidimensional sample entropy parameters to describe PD signals multidimensional feature information. Finally, partial discharge faults are classified by sphere-structured support vector machines algorithm. The result indicates that this method is able to identify and classify different partial discharge faults.


2021 ◽  
Vol 5 (4) ◽  
pp. 78
Author(s):  
Anis Malekzadeh ◽  
Assef Zare ◽  
Mahdi Yaghoobi ◽  
Roohallah Alizadehsani

This paper proposes a new method for epileptic seizure detection in electroencephalography (EEG) signals using nonlinear features based on fractal dimension (FD) and a deep learning (DL) model. Firstly, Bonn and Freiburg datasets were used to perform experiments. The Bonn dataset consists of binary and multi-class classification problems, and the Freiburg dataset consists of two-class EEG classification problems. In the preprocessing step, all datasets were prepossessed using a Butterworth band pass filter with 0.5–60 Hz cut-off frequency. Then, the EEG signals of the datasets were segmented into different time windows. In this section, dual-tree complex wavelet transform (DT-CWT) was used to decompose the EEG signals into the different sub-bands. In the following section, in order to feature extraction, various FD techniques were used, including Higuchi (HFD), Katz (KFD), Petrosian (PFD), Hurst exponent (HE), detrended fluctuation analysis (DFA), Sevcik, box counting (BC), multiresolution box-counting (MBC), Margaos-Sun (MSFD), multifractal DFA (MF-DFA), and recurrence quantification analysis (RQA). In the next step, the minimum redundancy maximum relevance (mRMR) technique was used for feature selection. Finally, the k-nearest neighbors (KNN), support vector machine (SVM), and convolutional autoencoder (CNN-AE) were used for the classification step. In the classification step, the K-fold cross-validation with k = 10 was employed to demonstrate the effectiveness of the classifier methods. The experiment results show that the proposed CNN-AE method achieved an accuracy of 99.736% and 99.176% for the Bonn and Freiburg datasets, respectively.


2015 ◽  
Vol 22 (2) ◽  
pp. 251-262 ◽  
Author(s):  
Chaolong Zhang ◽  
Yigang He ◽  
Lei Zuo ◽  
Jinping Wang ◽  
Wei He

Abstract Correct incipient identification of an analog circuit fault is conducive to the health of the analog circuit, yet very difficult. In this paper, a novel approach to analog circuit incipient fault identification is presented. Time responses are acquired by sampling outputs of the circuits under test, and then the responses are decomposed by the wavelet transform in order to generate energy features. Afterwards, lower-dimensional features are produced through the kernel entropy component analysis as samples for training and testing a one-against-one least squares support vector machine. Simulations of the incipient fault diagnosis for a Sallen-Key band-pass filter and a two-stage four-op-amp bi-quad low-pass filter demonstrate the diagnosing procedure of the proposed approach, and also reveal that the proposed approach has higher diagnosis accuracy than the referenced methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoyun Zhao ◽  
Xiaohong Wang ◽  
Tianshun Yang ◽  
Siyu Ji ◽  
Huiquan Wang ◽  
...  

AbstractSleep apnea syndrome (SAS) is a disorder in which respiratory airflow frequently stops during sleep. Alterations in electroencephalogram (EEG) signal are one of the physiological changes that occur during apnea, and can be used to diagnose and monitor sleep apnea events. Herein, we proposed a method to automatically distinguish sleep apnea events using characteristics of EEG signals in order to categorize obstructive sleep apnea (OSA) events, central sleep apnea (CSA) events and normal breathing events. Through the use of an Infinite Impulse Response Butterworth Band pass filter, we divided the EEG signals of C3-A2 and C4-A1 into five sub-bands. Next, we extracted sample entropy and variance of each sub-band. The neighbor composition analysis (NCA) method was utilized for feature selection, and the results are used as input coefficients for classification using random forest, K-nearest neighbor, and support vector machine classifiers. After a 10-fold cross-validation, we found that the average accuracy rate was 88.99%. Specifically, the accuracy of each category, including OSA, CSA and normal breathing were 80.43%, 84.85%, and 95.24%, respectively. The proposed method has great potential in the automatic classification of patients' respiratory events during clinical examinations, and provides a novel idea for the development of an automatic classification system for sleep apnea and normal events without the need for expert intervention.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiyuan Su ◽  
Changqing Cao ◽  
Xiaodong Zeng ◽  
Zhejun Feng ◽  
Jingshi Shen ◽  
...  

AbstractFor large-scale integrated electronic equipment, the complex operating mechanisms make fault detection very difficult. Therefore, it is important to accurately identify analog circuit faults in a timely manner. To overcome this problem, this paper proposes a novel fault diagnosis method based on the deep belief network (DBN) and restricted Boltzmann machine (RBM) optimized by the gray wolf optimization (GWO) algorithm. First, DBN is used to extract the deep features of the analog circuit output signal. Then, GWO is used to optimize the penalty factor c and kernel parameter g of support vector machine (SVM). Finally, GWO-SVM is used to diagnose the signal features extracted by the DBN. Fault diagnosis simulation was conducted for the Sallen–Key band-pass filter and a four-opamp biquad highpass filter. The experimental results show that compared with the existing algorithms, the algorithm proposed in this paper improves the accuracy of Sallen–Key bandpass filter circuit to 100% and shortens the fault diagnosis time by about 90%; for four-opamp biquad highpass filter, the accuracy rate has increased to 99.68%, and the fault diagnosis time has been shortened by approximately 75%, and reduce hundreds of iterations. Moreover, the experimental results reveal that the proposed fault diagnosis method greatly improves the accuracy of analog circuit fault diagnosis, which solves a major problem in analog circuitry and has great significance for the future development of relevant applications.


2021 ◽  
Vol 15 (1) ◽  
pp. 33-43
Author(s):  
Poonam Chaudhary ◽  
Rashmi Agrawal

The classification accuracy has become a significant challenge and an important task in sensory motor imagery (SMI) electroencephalogram (EEG) based Brain Computer interface (BCI) system. This paper compares ensemble classification framework with individual classifiers. The main objective is to reduce the inference of non-stationary and transient information and improves the classification decision in BCI system. The framework comprises the three phases as follows: (1) the EEG signal first decomposes into triadic frequency bands: low pass band, band pass filter and high pass filter to localize α, β and high γ frequency bands within the EEG signals, (2) Then, Common spatial pattern (CSP) algorithm has been applied on the extracted frequencies in phase I to heave out the important features of EEG signal, (3) Further, an existing Dynamic Weighted Majiority (DWM) ensemble classification algorithm has been implemented using features extracted in phase II, for final class label decision. J48, Naive Bayes, Support Vector Machine, and K-Nearest Neighbor classifiers used as base classifiers for making a diverse ensemble of classifiers. A comparative study between individual classifiers and ensemble framework has been included in the paper. Experimental evaluation and assessment of the performance of the proposed model is done on the publically available datasets: BCI Competition IV dataset IIa and BCI Competition III dataset IVa. The ensemble based learning method gave the highest accuracy among all. The average sensitivity, specificity, and accuracy of 85.4%, 86.5%, and 85.6% were achieved with a kappa value of 0.59 using DWM classification.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Shutao Zhao ◽  
Ke Chang ◽  
Erxu Wang ◽  
Bo Li ◽  
Kedeng Wang ◽  
...  

In order to diagnose the retarder faults of oil pumping machine accurately in complex environments and improve the generalization of the algorithm, a GWO-SVM fault diagnosis algorithm based on the combination of sound texture and vibration entropy characteristics was proposed. Firstly, the acquired sound signal was purified by band-pass filter, then generalized S-transform was developed to extract the box dimension, directivity, and contrast ratio, which reflect the characteristics of time-frequency spectrum, to construct three-dimensional texture eigenvectors. Secondly, the K parameter of variational mode decomposition (VMD) was reasonably selected by the energy method, and then the vibration signal was decomposed to get modal components, and the permutation entropy was obtained from modal components. Finally, joint eigenvectors were constructed and fed into SVM for learning. The gray wolf optimization (GWO) algorithm was used to optimize the parameters of the SVM model based on mixed kernel function, which reduces the impact of sensor frequency response, environmental noise, and load fluctuation disturbance on the accuracy of retarder fault diagnosis. The results showed that the GWO-SVM fault diagnosis method, which is based on the combination of sound texture and vibration entropy characteristics, makes full use of the complementary advantages of signal frequency band. And the overall diagnostic accuracy for the experimental samples reaches 100%, which has good generalization ability.


2018 ◽  
Vol 7 (2.6) ◽  
pp. 163
Author(s):  
D Hari Krishna ◽  
I A.Pasha ◽  
T Satya Savithri

To communicate without any muscle movement and purely based on brain signal has been the goal of Brain computer interfacing (BCI). Recent BCI based studies reported more and more accurate detection of brain states. This paper proposes a study that detects EEG signal belonging todifferent imaginary motor activities (Right leg, right hand, left leg and left hand). The Electroencephalogram (EEG) signal has been conditioned by band pass filter (BPF) to improve signal to noise ratio (SNR). The proposed method is based on similarity between signals to extract features. For measuring the similarity between signals, Cross correlation (CC) is used. An ensemble set of five classifiers (Linear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Naïve Bayes (NB) and Binary Decision Tree) was used collectively.  As the similarity measurement was binary in nature, one versus rest (OVR) approach was used for multi class classification. Random subset of features was used to train the ensemble of classifiers. The classification label was obtained by using majority voting. An average accuracy of 89.57% was observed among all 10 subjects.


2021 ◽  
Vol 12 (2) ◽  
pp. 67-77
Author(s):  
Umme Farhana ◽  
Mst Jannatul Ferdous

In brain computer interface (BCI) systems, the electroencephalography (EEG) signals give a pathway to a motor disabled person to communicate outside using the brain signal and a computer. EEG signals of different motor imagery (MI) movements can be differentiated using an effective classification technique to aid a motor disabled patient. The purpose of this paper is to classify two different types of MI movement tasks, movement of the left hand and movement of the right foot EEG signals accurately. For this purpose we have used a publicly available dataset. Since the feature extraction for classification is an important task, so we have used popular common spatial pattern (CSP) method for spatial feature extraction. Two different machine learning classifiers named support vector machine (SVM) and K-nearest neighbor (KNN) have been used to verify the proposed method. We got the highest average results 95.55%, 98.73% and 92.38% in case of SVM and 93.5%, 98.73% and 90.15% in case of KNN for classification accuracy, sensitivity, and specificity, respectively when a Butterworth band-pass filter passed through [10–30] Hz. On the other hand accuracy came to 89.4% in [10-30] Hz when applying CSP for feature extraction and fisher linear discriminant analysis (FLDA) for classification on this dataset earlier. Journal of Engineering Science 12(2), 2021, 67-77


Sign in / Sign up

Export Citation Format

Share Document