scholarly journals Microbial Life on the Surface of Microplastics in Natural Waters

2021 ◽  
Vol 11 (24) ◽  
pp. 11692
Author(s):  
Olena Stabnikova ◽  
Viktor Stabnikov ◽  
Andriy Marinin ◽  
Maris Klavins ◽  
Linards Klavins ◽  
...  

Major water-polluting microplastics (for example, polyethylene, polypropylene and others) have lower density than water. Therefore, they are concentrated in the neustonic layer near the water-air interface altogether with dissolved or colloidal natural organic matter, hydrophobic cells and spores of bacteria. This can cause environmental and public health problems because the floating micro- and nanoparticles of plastics could be coated with biofilm of hydrophobic and often putative pathogenic bacteria. Biofilm-coated microplastics are more attractive for consumption by aquatic animals than pure microplastics, and that increases the negative impacts of microplastics. So, impacts of even small quantities of microplastics in aquatic environments must be accounted for considering their accumulation in the micro-layer of water-air interphase and its interaction with bacterioneuston. Microorganisms attached to the surface of microplastic particles could interact with them, use them as substrates for growth, to change properties and biodegrade. The study of microbial life on the surface of microplastic particles is one of the key topics to understanding their role in the environment.

Carbon ◽  
2004 ◽  
Vol 42 (3) ◽  
pp. 547-557 ◽  
Author(s):  
Seyed A Dastgheib ◽  
Tanju Karanfil ◽  
Wei Cheng

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
D. A. Khundzhua ◽  
S. V. Patsaeva ◽  
V. A. Terekhova ◽  
V. I. Yuzhakov

The work is targeted to confirm participation of microscopic fungi in transformation of humus substances in aquatic environments. The research is focused on the spectroscopic study of the collection of fungal strains with different pigmentation of mycelium. Spectral properties of fungal metabolites were measured and compared to that of natural aquatic nonliving organic matter and commercial humus substances in aqueous solutions. The experiments revealed that the effect of microscopic fungi growing in the culture medium with added humate appeared as changes in the humic-type fluorescence: its characteristics became more similar to that of nonliving organic matter in natural waters than to original humate preparation. The experiments demonstrated degradation of coal-originated humate due to microbial activity into compounds of smaller molecular size and increased heterogeneity. We resume that transformation of humus substances by fungal cultures can be monitored and characterized using spectral measurements.


Author(s):  
G. V. Korshin ◽  
J. F. Ferguson ◽  
M. E. Rock

Natural organic matter (NOM) is a ubiquitous and important component of natural waters. Polymeric species related to humus found in soils constitute the major part of NOM. NOM is of major importance for the speciation of metals in waters but its effects on metal corrosion are little known. The influence of NOM on the morphology of corroding copper surfaces is discussed in this communication. The studies were performed for copper coupons exposed for 7 weeks to waters supporting an intense localized corrosion attack called pitting. Two types of waters were used: highly mineralized water at pH close to 7.3 (water A) and soft water at pH close to 9.3 (water B). The morphology of the surface was examined using conventional photography and SEM (JEOL 5200). The range of accelerating voltages was from 10 to 25 kV.Profound effects of NOM on the state of the corroding copper surface were found.


2006 ◽  
Vol 6 (2) ◽  
pp. 25-30 ◽  
Author(s):  
M. Koh ◽  
M.M. Clark ◽  
K.P. Ishida

Rejection by membrane adsorption has been observed and widely reported. However, little is known about whether membranes possess an adsorption capacity. Experimental data showed that when a hydrophobic polypropylene (PP) microfilter was used to filter a large volume of particle-free surface water containing dissolved natural organic matter (NOM), later batches of microfiltration (MF) permeate caused more flux decline to a fresh 20K-Dalton polyethersulfone (PES) ultrafilter. This suggests that membranes can have an adsorption capacity for foulants. In this research, the gradual increase in absorbance of ultraviolet (UV) light by subsequent batches of MF permeate was observed, and supports the findings from previous studies, that only a small fraction of NOM causes membrane fouling. Attenuated total reflectance Fourier transform infrared spectrometry and energy dispersive spectroscopy of fouled PP and PES membranes suggests foulants containing amide, aromatic, ether, hydroxyl and silicate functional groups. Silicates appear to participate in membrane fouling, and its removal with the small fraction of fouling NOM can reduce the fouling potential of water. These data improve our understanding of membrane fouling by natural waters, and have implications for the design of membrane plants that filter natural waters.


2014 ◽  
Vol 11 (18) ◽  
pp. 5259-5267 ◽  
Author(s):  
B. Gu ◽  
B. Mishra ◽  
C. Miller ◽  
W. Wang ◽  
B. Lai ◽  
...  

Abstract. Mercury (Hg) bioavailability and geochemical cycling is affected by its partitioning between the aqueous and particulate phases. We applied a synchrotron-based X-ray fluorescence (XRF) microprobe to visualize and quantify directly the spatial localization of Hg and its correlations with other elements of interest on suspended particles from a Hg-contaminated freshwater system. Up to 175 μg g−1 Hg is found on suspended particles, but less than 0.01% is in the form of methylmercury. Mercury is heterogeneously distributed among phytoplankton (e.g., diatoms) and mineral particles that are rich in iron oxides and natural organic matter (NOM). The diatom-bound Hg is mostly found on outer surfaces of the cells, suggesting passive sorption of Hg on diatoms. Our results indicate that localized sorption of Hg onto suspended particles, including diatoms and NOM-coated oxide minerals, may play an important role in affecting the partitioning, reactivity, and biogeochemical cycling of Hg in natural aquatic environments.


2011 ◽  
Vol 64 (9) ◽  
pp. 1876-1884 ◽  
Author(s):  
Anat Lakretz ◽  
Eliora Z. Ron ◽  
Tali Harif ◽  
Hadas Mamane

The main goal of this study was to examine the influence of natural organic matter (NOM) on the efficiency of H2O2/UV advanced oxidation process (AOP) as a preventive treatment for biofilm control. Pseudomonas aeruginosa PAO1 biofilm-forming bacteria were suspended in water and exposed to various AOP conditions with different NOM concentrations, and compared to natural waters. H2O2/UV prevented biofilm formation: (a) up to 24 h post treatment – when residual H2O2 was neutralized; (b) completely (days) – when residual H2O2 was maintained. At high NOM concentrations (i.e. 25 mg/L NOM or 12.5 mg/L DOC) an additive biofilm control effect was observed for the combined H2O2/UV system compared to UV irradiation alone, after short biofilm incubation times (<24 h). This effect was H2O2 concentration dependent and can be explained by the high organic content of these water samples, whereby an increase in NOM could enhance •OH production and promote the formation of additional reactive oxygen species. In addition, maintaining an appropriate ratio of bacterial surviving conc.: residual H2O2conc. post-treatment could prevent bacterial regrowth and biofilm formation.


2008 ◽  
Vol 606 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Yoann Louis ◽  
Petra Cmuk ◽  
Dario Omanović ◽  
Cédric Garnier ◽  
Véronique Lenoble ◽  
...  

2015 ◽  
Vol 12 (6) ◽  
pp. 673 ◽  
Author(s):  
Rhys M. Goodhead ◽  
Blair D. Johnston ◽  
Paula A. Cole ◽  
Mohammed Baalousha ◽  
David Hodgson ◽  
...  

Environmental context Nanoparticles are present in growing volumes of consumer products and are suspected to be released into the environment at detectable levels. We focus on cerium dioxide nanoparticles and investigate their availability to fish from the water column, where we found increasing concentrations of natural organic material increased the ceria measured in the fish gills. This complex interaction between nanoparticle behaviour and uptake from environmentally relevant test systems is significantly understudied. Abstract Natural organic colloids affect the fate and behaviour of nanoparticles in the aquatic environment but how these interactions affect the bioavailability of nanoparticles to organisms is a major knowledge gap in risk-assessment analysis. Here, we investigated interactions of citrate-coated cerium dioxide (CeO2) nanoparticles with fulvic acids, representing natural organic matter, and assessed their bioavailability to fish (common carp, Cyprinus carpio) exposed chronically (32days) via the water. We show a fulvic acid concentration-related enhancement in the uptake of cerium (Ce) into gill tissues, with some evidence for an enhanced Ce uptake also into kidney and brain tissues in the presence of fulvic acids, but with more variable responses. We present evidence for differences in the aggregation behaviour for CeO2 nanoparticles in the different exposure scenarios, with reduced CeO2 particle aggregate size with citrate coating and fulvic acids, as determined from dynamic light scattering. We highlight that multiple analytical approaches are essential for understanding the dynamic nature of the particles and also that interpretations on measured particle sizes and characteristics may differ depending on the technique(s) employed. We conclude that conditions in natural waters are likely to play a fundamental role in affecting bioavailability and thus potential biological effects of CeO2 particles.


10.14311/334 ◽  
2002 ◽  
Vol 42 (2) ◽  
Author(s):  
A. Grünwald ◽  
B. Šťastný ◽  
K. Slavíčková ◽  
M. Slavíček

Recent drinking water regulations have lowered the standards for disinfection by-products and have added new disinfection by-products for regulation. Natural organic matter (NOM), mainly humic compounds, plays a major role in the formation of undesirable organic by-products following disinfection of drinking water. Many disinfection by-products have adverse carcinogenic or mutagenic effects on human health. This paper deals with the formation potencial of disinfection by-products in water samples taken from different places in the Flaje catchment.


Sign in / Sign up

Export Citation Format

Share Document