scholarly journals A Reflection-Type Dual-Band Phase Shifter with an Independently Tunable Phase

2022 ◽  
Vol 12 (1) ◽  
pp. 492
Author(s):  
Suyeon Kim ◽  
Junhyung Jeong ◽  
Girdhari Chaudhary ◽  
Yongchae Jeong

This paper presents a design for a dual-band tunable phase shifter (PS) with independently controllable phase shifting between each operating frequency band. The proposed PS consists of a 3-dB hybrid coupler, in which the coupled and through ports terminate with the same two reflection loads. Each reflection load consists of a series of quarter-wavelength (λ/4) transmission lines, λ/4 shunt open stubs, and compensation elements at each operating frequency arm. In this design, a wide phase shifting range (PSR) is achievable at each operating frequency band (fL: lower frequency; fH: higher frequency) by compensating for the susceptance occurring at the co-operating frequency band caused by the λ/4 shunt open stub. The load of fL does not affect the load of fH and vice versa. The dual-band tunable PS was fabricated at fL = 1.88 GHz and fH = 2.44 GHz, and testing revealed that achieved a PSR of 114.1° with an in-band phase deviation (PD) of ± 8.43° at fL and a PSR of 114.0° ± 5.409° at fH over a 100 MHz bandwidth. In addition, the maximum insertion losses were smaller than 1.86 dB and 1.89 dB, while return losses were higher than 17.2 dB and 16.7 dB within each respective operating band.

2014 ◽  
Vol 488-489 ◽  
pp. 1043-1046
Author(s):  
Li Zhu ◽  
Xiang Jun Gao ◽  
Hui Yong Zeng ◽  
Guang Ming Wang

Wide-band planar microstrip balun implemented with simplified composite right/left-handed (SCRLH) structure is presented in this letter. The proposed balun consists of a wide-band Wilkinson power divider and a broadband 180° phase shifter based on SCRLH structure. The new design was simulated and validated by the measurement. In the experimental results, within the frequency range from 3.1 to 8.3 GHz (91.2%), the measured return losses of the unbalanced and balanced ports are greater than 10 dB, and the balanced ports isolation is below 15 dB. The measured amplitude and phase difference between the two balanced ports are within ±0.6 dB and ±50, respectively, over the operating frequency band.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 804
Author(s):  
Gibeom Shin ◽  
Kyunghwan Kim ◽  
Kangseop Lee ◽  
Hyun-Hak Jeong ◽  
Ho-Jin Song

This paper presents a variable-gain amplifier (VGA) in the 68–78 GHz range. To reduce DC power consumption, the drain voltage was set to 0.5 V with competitive performance in the gain and the noise figure. High-Q shunt capacitors were employed at the gate terminal of the core transistors to move input matching points for easy matching with a compact transformer. The four stages amplifier fabricated in 40-nm bulk complementary metal oxide semiconductor (CMOS) showed a peak gain of 24.5 dB at 71.3 GHz and 3‑dB bandwidth of more than 10 GHz in 68–78 GHz range with approximately 4.8-mW power consumption per stage. Gate-bias control of the second stage in which feedback capacitances were neutralized with cross-coupled capacitors allowed us to vary the gain by around 21 dB in the operating frequency band. The noise figure was estimated to be better than 5.9 dB in the operating frequency band from the full electromagnetic (EM) simulation.


2018 ◽  
Vol 10 (8) ◽  
pp. 861-869 ◽  
Author(s):  
Min-Hua Ho ◽  
Yi-Hao Hong ◽  
Jen-Chih Li

AbstractThe contribution of this paper is to propose a novel rat-race hybrid coupler of arbitrary coupling coefficient. Traditionally, the rat-race hybrid couplers are built by various loop-alike transmission-lines of multiple quarter-wavelength, and in this paper, we approach the coupler design by using a circular substrate integrated waveguide (SIW) cavity (SIWC). The employed SIWC supports two mutually orthogonal degenerate modes, and cavity field is formed by the two modes in an arbitrary weighting ratio which defines the proposed rat-race coupler's coupling coefficient. The cavity is excited by a microstrip combined coupling slot with the microstrip along a specifically chosen direction. The energy of each degenerate mode can be solely extracted by an associated subminiature version A (SMA) whose position is carefully determined. The isolation between the coupling slots is assured by their perpendicular layout, and the isolation between the SMA probes is obtained by the orthogonality of the two degenerate modes. Experiments are conducted on the 3- and 10-dB coupling coefficient samples to verify this novel rat-race coupler design. The measurements agree well with the simulations, and circuit's good performance is observed in terms of coupling precision, isolations, and small phase imbalances.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Giovanni Andrea Casula ◽  
Paolo Maxia

A multiband printed Log-periodic dipole array (LPDA) antenna for wireless communications is presented. The antenna has been designed starting from Carrel’s theory, optimized using CST Microwave Studio 2012, and then realized. The comparison between simulated and measured results shows that the proposed antenna can be used for wireless communications both in the S (2.4–3 GHz) and in the C (5.2–5.8 GHz) frequency bands, with very good input matching and a satisfactory end-fire radiation pattern. Moreover, it has a compact size, is very easy to realize, and presents an excellent out-of-band rejection, without the use of stop-band filters, thus avoiding interference out of its operating frequency band.


Frequenz ◽  
2017 ◽  
Vol 71 (11-12) ◽  
Author(s):  
Feng Wei ◽  
Xin Yi Wang ◽  
Dun Wei Liao ◽  
Xiao Wei Shi

AbstractA tunable balanced bandpass filter (BPF) with a good common-mode (CM) suppression based on slotline resonators is proposed in this letter. Two novel stub-loaded slotline resonators (SLSRs) terminated with varactors are designed to obtain tunable differential-mode (DM) responses. It is found that a high and wideband CM suppression can be achieved by employing balanced stepped-impedance microstrip-slotline transition structures. Moreover, the DM passbands are independent from the CM ones, which can significantly simplify the design procedure. To validate the design theory, a compact tunable balanced BPF with an operating frequency band ranging from 3.09 GHz to 3.6 GHz is designed and fabricated. The measured results are found to agree well with the simulated ones.


Author(s):  
Suman Nelaturi ◽  
Nookala Venkata Satya Narasimha Sarma

This communication reported the patch antenna working at Wi-Fi and 5G bands. To acquire compactness the side lengths of the patch are taken based on upper-frequency band (3.3 GHz). Dual-band operation (lower resonating band) is realized by loading the Mushroom Unit Cell (MUC) along the bottom right corner of the patch. To obtain Circular Polarization (CP) at the 5G band the conventional patch is modified with fractal boundary. This blend of the Double Negative Transmission Lines metamaterials (DNG TL), as well as fractal concepts yielded good compactness suitable for ultra-thin portable gadgets. Measured results have good correlation with simulated data from HFSS. The obtained bandwidths at the lower and upper bands are 2.51 % and 6.23 % when the Poly fractal curves are introduced. CP bandwidth of the proposed antenna at 5G band obtained from the measured data is 2.35 % which is the highest to the best of authors' knowledge for this type of thin antennas.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Bei Huang ◽  
Mochao Li ◽  
Weifeng Lin ◽  
Jun Zhang ◽  
Gary Zhang ◽  
...  

A compact hybrid-mode antenna is proposed for sub-6 GHz communication. The proposed antenna is composed of a slotted rectangular patch, a feeding dipole, and a balun. Three modes are sequentially excited in a shared patch to achieve a compact size. A prototype antenna with a major size of 0.48 λ0 × 0.31 λ0 × 0.16 λ0 (λ0 is the wavelength in the free space at the center of the operating frequency band) is fabricated and measured. The measured results demonstrate an impedance bandwidth of 56.87% from 2.97 GHz to 5.33 GHz and an average gain of approximately 8.00 dBi with 1 dB variation in the operating frequency band of 3.0–5.0 GHz. The proposed antenna can be an element for microbase stations in sub-6 GHz communication.


2013 ◽  
Vol 441 ◽  
pp. 137-140
Author(s):  
Wei Li ◽  
Li Qing Wang ◽  
Li Jia Chen ◽  
Xiao Wei Liu

In this Paper, a 8-way Microwave Equal Power Divider with Substrate Integrated Waveguide Technology is Proposed and Designed . the Substrate Integrated Waveguide Power Divider with Metal pin Inductance is Investigated and Simulated. the Center Frequency is 9.5GHz, and the Operating Frequency Band is more than 1GHz. the Maximal Insert Loss is Less than 1dB from 9GHz to 10GHz. the Impedance of each Ports is 50Ω.


Sign in / Sign up

Export Citation Format

Share Document