scholarly journals Impact of Water Solubility on Chemical Composition and Surface Structure of Two Generations of Bioceramic Root Canal Sealers

2022 ◽  
Vol 12 (2) ◽  
pp. 873
Author(s):  
Sawsan T. Abu Abu Zeid ◽  
Ruaa A. Alamoudi ◽  
Abeer A. Mokeem Mokeem Saleh

Aimed to evaluate the effect of water solubility on chemical properties and surface structure of bioceramic-based (BC-HiFlow and BC-EndoSeqence) compared with resin-based (Adseal) root canal sealers. Fresh mix was inserted into polyethylene mold (n = 10) and subjected to Vicat needle to evaluate the setting time. The set discs were analyzed by Fourier transform infrared (FTIR) spectroscopy then immersed in deionized water for 1, 7, 14 and 28 days. The solubility%, pH changes, released calcium (Ca2+), phosphate (PO43−) and silicon (Si4+) ions were evaluated after each immersion period. The discs were analyzed by scanning electron microscopy/Energy dispersed X-ray (SEM/EDX) before and after solubility test. Although FTIR detected similar composition of both bioceramic-sealers, BC-EndoSequence determined the prolonged setting times. At the end of solubility test, both bioceramic-sealers exhibited significant greater solubility (>3%), alkaline pH (>11) at p < 0.001. Adseal displayed the significant greatest Ca2+ and PO43− released, while BC-HiFlow displayed the significant greatest Si4+ release (p < 0.001). SEM revealed voids and pores on the surface of all tested sealers with the greatest value on Adseal surface. In conclusion, although both bioceramic-sealers had high solubility, BC-Hiflow complied the ISO standard regarding setting time and least surface micropores better than that of BC-EndoSequence.

2018 ◽  
Vol 29 (1) ◽  
pp. 48-53
Author(s):  
Manuela Gonçalves de Souza e Silva ◽  
Eliseu Aldrighi Münchow ◽  
Rafael Pino Vitti ◽  
Mário Alexandre Coelho Sinhoreti ◽  
Evandro Piva ◽  
...  

Abstract The aim of this study was to synthesize and evaluate physicochemical properties of a new salicylate derivative in experimental calcium-based root canal sealers. Two salicylate derivatives were synthesized for the transesterification reaction of methyl salicylate with two different alcohols (1,3-butylenoglicol disalicylate-BD and pentaerythritol tetrasalicylate -PT) in molar ratio 1:3 and 1:6, respectively. The products (BD and PT), were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance spectroscopy (RMN). Calcium-based experimental sealers were prepared with the same catalyst paste (60% of MTA, 39% of n-ethyl-o-toluenesulfonamide, and 1% titanium dioxide) and four different concentrations of BD and PT in the base pastes (40/0 - control, 35/5, 30/10 and 20/20) with 60% of bismuth oxide. The experimental sealers were evaluated for setting time, solubility (24 h, 7, 14 and 30 days), diametral tensile strength and Young’s Modulus. Data were analyzed by one- or two-way ANOVA with Tukey’s test (p<0.05). The addition of PT reduced the materials setting time. After 24 h the sealer 40/0 and 35/5 had higher solubility, and after 14 and 28 days the sealer 20/20 showed the lowest solubility (p<0.05). After 7 days the sealer 20/20 stabilized its solubility. The sealer 40/0 presented the highest values and the 20/20 presented the lowest values of diametral tensile strength and Young’s modulus (p<0.05). The addition of PT to calcium-based root canal sealers provides benefits to the setting time and solubility.


2018 ◽  
Vol 17 ◽  
pp. e181207
Author(s):  
Clauber Romagnoli ◽  
Klíssia Romero Felizardo ◽  
Ricardo Danil Guiraldo ◽  
Alcides Gonini Júnior ◽  
Renan Hideki Kaneshima ◽  
...  

Aim: The aim of this study was to evaluate and compare the setting times (ST), flow (FW), radiopacity (RP), dimensional stability (DS), solubility (SB), and polymerization stress (PS) of the MTA Fillapex and AH Plus root canal sealers. Methods: The above qualities were tested according to ISO 6876/2001 standardization. The water used in the dimensional stability test was evaluated to verify the presence of released materials. For the photoelastic analysis, 20 photoelastic resin rings were prepared, and the root canal sealers were inserted. After 24 hours, the specimens were analyzed in a Polariscope. Data of the setting times, flow tests, radiopacity, dimensional stability, and solubility tests were submitted to a Kolgomorov–Smirnov test and then to a Student’s t-test at the 5% significance level. Results: The data derived from photoelastic analyses were submitted to an ANOVA and Tukey’s test with a significance level of 5%. MTA Fillapex and AH Plus complied with ISO 6876/2001. However, there were significant differences (p < 0.05) between the two cements for ST, FW, RP, DS, and SB. MTA Fillapex showed higher FW, SB, and PS when compared with AH Plus. Conclusions: MTA Fillapex and AH Plus complied with ISO 6876/2001 in terms of ST, FW, RP, DS, and SB. MTA Fillapex showed higher PS when compared to AH Plus.


1999 ◽  
Vol 13 (1) ◽  
pp. 83-87 ◽  
Author(s):  
Manoel Damião SOUSA NETO ◽  
Luis Fernando GUIMARÃES ◽  
Danilo Mathias Zanello GUERISOLI ◽  
Paulo César SAQUY ◽  
Jesus Djalma PÉCORA

In this study, the effect on the setting time by the addition of different kinds of rosin and hydrogenated resin on the Grossman cement powder was evaluated. The experiments were carried out following the American Dental Association’s specification number 57 for root canal sealers. For this analysis, different Grossman cement powders were prepared using different rosins (X, WW and WG) and hydrogenated resins (Staybelite and Staybelite ester 10). The study of the physicochemical properties of the Grossman cements obtained the different kinds of rosins and hydrogenated resins interference on the cement’s setting time. The hydrogenated resin, having a higher pH, increased the setting time of the cement when compared to the X, WW and WG rosins.


2007 ◽  
Vol 336-338 ◽  
pp. 1654-1657
Author(s):  
Rui Liu ◽  
Li Min Dong ◽  
Qing Feng Zan ◽  
Chen Wang ◽  
Jie Mo Tian

The aim of this work is to improve the mechanical properties of calcium phosphate bone cement (CPC) by appending chitosan microspheres to CPC base. That chitosan degrades rapidly than bone cement has been proved by previous investigations. Porous CPC has low compressive strength because of the pores in it weakening the structure. Additive chitosan microspheres can improve the mechanical properties by bearing the compress with the CPC base and produce pores after degradation. This study investigates the effect of chitosan microspheres on the setting time, mechanical properties, phase evolution and morphology of CPC. The additive proportion of chitosan microspheres ranges from 0 wt% to 30 wt%. Compared with original CPC, the modified CPC has higher compressive strength, without significantly affecting the chemical properties. The phase composition of the CPC is tested by XRD. The microstructures of CPC are observed using SEM. The final setting times range from 5~15 minutes and can be modulated by using different liquid and powder (L/P) ratio.


2014 ◽  
Vol 40 (4) ◽  
pp. 530-533 ◽  
Author(s):  
Carlos Henrique R. Camargo ◽  
Tatiana R. Oliveira ◽  
Gleyce O. Silva ◽  
Sylvia B. Rabelo ◽  
Marcia C. Valera ◽  
...  

Author(s):  
M Colombo ◽  
C Poggio ◽  
A Dagna ◽  
MV Meravini ◽  
P Riva ◽  
...  

2019 ◽  
Vol 30 (6) ◽  
pp. 563-568 ◽  
Author(s):  
Mario Tanomaru-Filho ◽  
Maiby Cristine Prado ◽  
Fernanda Ferrari Esteves Torres ◽  
Raqueli Viapiana ◽  
Mariana Mena Barreto Pivoto-João ◽  
...  

Abstract The aim of this study was to evaluate physicochemical properties and bioactive potential of Sealer Plus, in comparison with MTA Fillapex, Sealapex and AH Plus. Setting time, flow, and radiopacity were evaluated based on ISO 6876 Standard. Flow was also assessed in area (mm²). The solubility and volumetric change of the sealers were evaluated after 7 and 30 days of immersion in distilled water. Solubility was evaluated by the difference in mass of materials before and after immersion. Volumetric change was evaluated by using microcomputed tomography (micro-CT). The bioactive potential was observed by Scanning Electron Microscopy (SEM) after immersion in PBS. Data were compared using ANOVA and Tukey tests (α=0.05). Sealer Plus presented the shortest setting time (196 min.) and Sealapex the longest (912 min.) (p<0.05). AH Plus showed the highest radiopacity (9.5 mm Al) and MTA Fillapex the lowest (2.7 mm Al) (p<0.05). All the sealers presented flow in accordance with ISO 6876/2012 (>17 mm). Sealer Plus showed low solubility and volumetric change (<1%), and MTA Fillapex showed the highest solubility (>25%), and volumetric change (>4%) after all time intervals (p<0.05). MTA Fillapex was the only sealer that showed bioactive potential. In conclusion, Sealer Plus presented proper physicochemical properties. However, this sealer did not present a bioactive potential.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5911
Author(s):  
Sawsan Abu Zeid ◽  
Hadeel Yaseen Edrees ◽  
Abeer Abdulaziz Mokeem Saleh ◽  
Osama S. Alothmani

This study evaluated the physicochemical properties and the effect of solubility on the surface morphology and composition of the root canal sealers MTA-Bioseal, MTA-Fillapex, and Adseal. Discs (n = 10) of freshly mixed sealer were prepared and then analyzed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX). The discs were immersed for 1, 7, 14, and 28 days in deionized water. The solubility %; pH change of the solution; and released calcium, phosphate, and silicon were measured for each period. The flowability and film thickness were also evaluated. Changes in the surface morphology and composition after 28 days of immersion were evaluated by SEM/EDX. The data were statistically analyzed by one-way ANOVA at p < 0.05. The FTIR and EDX results revealed similar compositions of MTA-Bioseal and MTA-Fillapex, but with different concentrations. The two MTA-based sealers had higher solution alkalinity (pH > 10) than Adseal (pH ≈ 8.5). MTA-Fillapex exhibited the highest solubility % and the largest calcium and silicon ion release. MTA-Bioseal had the highest phosphate ion release. After 28 days, the sealer surfaces showed large micropores, with larger pores in MTA-Fillapex. Adseal had an intermediate flowability but exhibited the greatest film thickness. Finally, the highest solubility and largest amount of silicon release was exhibited by MTA-Fillapex, which might predispose it to the development of large micropores, compromising the apical seal of obturation.


2016 ◽  
Vol 43 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Mijoo Kim ◽  
Hyojin Kang ◽  
Ju-Hee Hong ◽  
Kwang-Mahn Kim

Sign in / Sign up

Export Citation Format

Share Document