scholarly journals Mechanical Strength Study of a Cranial Implant Using Computational Tools

2022 ◽  
Vol 12 (2) ◽  
pp. 878
Author(s):  
Pedro O. Santos ◽  
Gustavo P. Carmo ◽  
Ricardo J. Alves de Sousa ◽  
Fábio A. O. Fernandes ◽  
Mariusz Ptak

The human head is sometimes subjected to impact loads that lead to skull fracture or other injuries that require the removal of part of the skull, which is called craniectomy. Consequently, the removed portion is replaced using autologous bone or alloplastic material. The aim of this work is to develop a cranial implant to fulfil a defect created on the skull and then study its mechanical performance by integrating it on a human head finite element model. The material chosen for the implant was PEEK, a thermoplastic polymer that has been recently used in cranioplasty. A6 numerical model head coupled with an implant was subjected to analysis to evaluate two parameters: the number of fixation screws that enhance the performance and ensure the structural integrity of the implant, and the implant’s capacity to protect the brain compared to the integral skull. The main findings point to the fact that, among all tested configurations of screws, the model with eight screws presents better performance when considering the von Mises stress field and the displacement field on the interface between the implant and the skull. Additionally, under the specific analyzed conditions, it is observable that the model with the implant offers more efficient brain protection when compared with the model with the integral skull.

2015 ◽  
Vol 741 ◽  
pp. 115-118 ◽  
Author(s):  
Bong Kwan Park ◽  
Jae Min Kim ◽  
Chang Min Keum ◽  
C. Kim ◽  
Heon Oh Choi

Since the wall thicknesses of most large LPG storage tanks are thin while their diameters are large, their structural integrity is one of the most important design factors. The tanks are mainly located near the waterfront for efficient transport and accessibility. This leads to exposure to wind loads, which should be considered in the design of the tanks. This paper describes an analytical technique for determining the structural integrity of a 45m diameter-LPG storage tank in the case of a wind load based on API 620 code. A finite element model for the tank was made using shell elements and analyzed under 50 m/s wind. The calculated maximum von-Mises stress was 103 MPa whereas the yield strength of tank’s material is 222 MPa. This result shows that the structural integrity of the tank is assured.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Bin Yang ◽  
Kwong-Ming Tse ◽  
Ning Chen ◽  
Long-Bin Tan ◽  
Qing-Qian Zheng ◽  
...  

This study is aimed at developing a high quality, validated finite element (FE) human head model for traumatic brain injuries (TBI) prediction and prevention during vehicle collisions. The geometry of the FE model was based on computed tomography (CT) and magnetic resonance imaging (MRI) scans of a volunteer close to the anthropometry of a 50th percentile male. The material and structural properties were selected based on a synthesis of current knowledge of the constitutive models for each tissue. The cerebrospinal fluid (CSF) was simulated explicitly as a hydrostatic fluid by using a surface-based fluid modeling method. The model was validated in the loading condition observed in frontal impact vehicle collision. These validations include the intracranial pressure (ICP), brain motion, impact force and intracranial acceleration response, maximum von Mises stress in the brain, and maximum principal stress in the skull. Overall results obtained in the validation indicated improved biofidelity relative to previous FE models, and the change in the maximum von Mises in the brain is mainly caused by the improvement of the CSF simulation. The model may be used for improving the current injury criteria of the brain and anthropometric test devices.


Author(s):  
Wan Nur Fatini Syahirah W. Dagang ◽  
◽  
Nik Harisha Qistina Nik Hamdi ◽  
Shahrul Hisyam Marwan ◽  
Jamaluddin Mahmud ◽  
...  

To reconstruct the fractured skull, affected patients are advised to undergo cranioplasty, which is a surgical procedure to repair the cranial defect by implanting materials such as autologous bone grafts or synthetic alloplastic materials. The use of synthetic alloplastic materials such as hydroxyapatite (HA) has been widely accepted due to their biocompatibility and suitability for larger cranial defects. The zinc hydroxyapatite (ZnHA) material is favourable as HA mimics 60% of the actual human bone, whereas zinc helps to improve its biomechanical properties. The purpose of this study is to construct the ZnHA cranial implant with different pore sizes of 600, 900, and 1200 µm in pentagonal shapes and to study its mechanical performance. At the end of the research, it was found that the implant with a pore size of 900 µm is the most appropriate implant to be utilized without affecting its mechanical performance. Aspects such as the deformation and von Mises stress are discussed to assist on the development of the ZnHA cranial implant. Keywords — Biomechanical analysis, cranial implant, finite element analysis, pore size, zinc hydroxyapatite


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niksa Mohammadi Bagheri ◽  
Mahmoud Kadkhodaei ◽  
Shiva Pirhadi ◽  
Peiman Mosaddegh

AbstractThe implementation of intracorneal ring segments (ICRS) is one of the successfully applied refractive operations for the treatment of keratoconus (kc) progression. The different selection of ICRS types along with the surgical implementation techniques can significantly affect surgical outcomes. Thus, this study aimed to investigate the influence of ICRS implementation techniques and design on the postoperative biomechanical state and keratometry results. The clinical data of three patients with different stages and patterns of keratoconus were assessed to develop a three-dimensional (3D) patient-specific finite-element model (FEM) of the keratoconic cornea. For each patient, the exact surgery procedure definitions were interpreted in the step-by-step FEM. Then, seven surgical scenarios, including different ICRS designs (complete and incomplete segment), with two surgical implementation methods (tunnel incision and lamellar pocket cut), were simulated. The pre- and postoperative predicted results of FEM were validated with the corresponding clinical data. For the pre- and postoperative results, the average error of 0.4% and 3.7% for the mean keratometry value ($$\text {K}_{\text{mean}}$$ K mean ) were predicted. Furthermore, the difference in induced flattening effects was negligible for three ICRS types (KeraRing segment with arc-length of 355, 320, and two separate 160) of equal thickness. In contrast, the single and double progressive thickness of KeraRing 160 caused a significantly lower flattening effect compared to the same type with constant thickness. The observations indicated that the greater the segment thickness and arc-length, the lower the induced mean keratometry values. While the application of the tunnel incision method resulted in a lower $$\text {K}_{\text{mean}}$$ K mean value for moderate and advanced KC, the induced maximum Von Mises stress on the postoperative cornea exceeded the induced maximum stress on the cornea more than two to five times compared to the pocket incision and the preoperative state of the cornea. In particular, an asymmetric regional Von Mises stress on the corneal surface was generated with a progressive ICRS thickness. These findings could be an early biomechanical sign for a later corneal instability and ICRS migration. The developed methodology provided a platform to personalize ICRS refractive surgery with regard to the patient’s keratoconus stage in order to facilitate the efficiency and biomechanical stability of the surgery.


Author(s):  
Armando Félix Quiñonez ◽  
Guillermo E Morales Espejel

This work investigates the transient effects of a single subsurface inclusion over the pressure, film thickness, and von Mises stress in a line elastohydrodynamic lubrication contact. Results are obtained with a fully-coupled finite element model for either a stiff or a soft inclusion moving at the speed of the surface. Two cases analyzed consider the inclusion moving either at the same speed as the mean velocity of the lubricant or moving slower. Two additional cases investigate reducing either the size of the inclusion or its stiffness differential with respect to the matrix. It is shown that the well-known two-wave elastohydrodynamic lubrication mechanism induced by surface features is also applicable to the inclusions. Also, that the effects of the inclusion become weaker both when its size is reduced and when its stiffness approaches that of the matrix. A direct comparison with predictions by the semi-analytical model of Morales-Espejel et al. ( Proc IMechE, Part J: J Engineering Tribology 2017; 231) shows reasonable qualitative agreement. Quantitatively some differences are observed which, after accounting for the semi-analytical model's simplicity, physical agreement, and computational efficiency, may then be considered as reasonable for engineering applications.


2013 ◽  
Vol 845 ◽  
pp. 403-407
Author(s):  
Natesan Dhandapani ◽  
A. Gnanavelbabu ◽  
M. Sivasankar

In this changing global scenario, modification, transplantation, and replacement can be the eternal solution for most of the problems in the medical field. Hence replacement technique finds a very prominent place in medicine as a remedy having closely tied up with biomechanics. One of the most important joints in the human body is the hip joint, the big and complex joint. Many researches were conducted and many are in progress, but most of these works use simplified models with either 2D or 3D approaches. The hip joint is formed by four components like femoral head cortical bone, stem, and neck. In this system we can find orthotropic and isotropic materials working together. The main objective of this research is to develop a three dimensional surface and solid finite element model of the hip joint to predict stresses in its individual components. This model is a geometric non-linear model, which helps us understand its structural mechanical behavior, seeming to suggest with advanced research in the future new hip joint prosthesis, as well as to prove the prosthesis joint interaction before being implanted in the patient. This research explains a complete human hip joint model without cartilaginous tissue, using ANSYS 10.0 Multiphysics Analysis for nine different postures in hip joint using three different materials (CoCr, Ti6Al4V, and UHMWPE) to calculate fatigue life. The result obtained from the analysis of surface model and solid model serve to help in predicting the life cycle, surface characteristics, shear stress in XY plane, stress concentration and areas that are prone to failure. Von Mises stress on the surface of our model facilitates us to equip and design an optimized prosthesis device having unique materials composition , with a highly bio-compatible and durable alloy at a low cost could be produced. In this way, a first important step towards the structural characterization of human hip joint has been developed.


2021 ◽  
Author(s):  
Sinan Yıldırım ◽  
Ufuk Çoban ◽  
Mehmet Çevik

Suspension linkages are one of the fundamental structural elements in each vehicle since they connect the wheel carriers i.e. axles to the body of the vehicle. Moreover, the characteristics of suspension linkages within a suspension system can directly affect driving safety, comfort and economics. Beyond these, all these design criteria are bounded to the package space of the vehicle. In last decades, suspension linkages have been focused on in terms of design development and cost reduction. In this study, a control arm of a diesel public bus was taken into account in order to get the most cost-effective design while improving the strength within specified boundary conditions. Due to the change of the supplier, the control arm of a rigid axle was redesigned to find an economical and more durable solution. The new design was analyzed first by the finite element analysis software Ansys and the finite element model of the control arm was validated by physical tensile tests. The outputs of the study demonstrate that the new design geometry reduces the maximum Von Mises stress 15% while being within the elastic region of the material in use and having found an economical solution in terms of supplier’s criteria.


Author(s):  
Mohammad Hosseini Farid ◽  
Ashkan Eslaminejad ◽  
Mohammadreza Ramzanpour ◽  
Mariusz Ziejewski ◽  
Ghodrat Karami

Accurate material properties of the brain and skull are needed to examine the biomechanics of head injury during highly dynamic loads such as blunt impact or blast. In this paper, a validated Finite Element Model (FEM) of a human head is used to study the biomechanics of the head in impact and blast leading to traumatic brain injuries (TBI). We simulate the head under various direction and velocity of impacts, as well as helmeted and un-helmeted head under blast waves. It is shown that the strain rates for the brain at impacts and blast scenarios are usually in the range of 36 to 241 s−1. The skull was found to experience a rate in the range of 14 to 182 s−1 under typical impact and blast cases. Results show for impact incidents the strain rates of brain and skull are approximately 1.9 and 0.7 times of the head acceleration. Also, this ratio of strain rate to head acceleration for the brain and skull was found to be 0.86 and 0.43 under blast loadings. These findings provide a good insight into measuring the brain tissue and cranial bone, and selecting material properties in advance for FEM of TBI.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Yi Wang ◽  
Yi Cui ◽  
Shuo Liu ◽  
Xinhui Wang ◽  
Xinwei Tian ◽  
...  

Abstract In this paper, the flattening process of a coated single asperity by a rigid flat is studied based on a two-dimensional finite element model under different contact interferences. The soft coating and hard substrate materials of the main bearing shell in a medium-speed vehicle diesel engine are both considered to follow the power-law hardening elastic-plastic properties. For both loading and unloading processes, the effects of geometrical and material properties, including the coating thickness, Young’s modulus, Poisson’s ratio, yielding stress, and hardening exponent, on the contact behaviors are studied in a wide range to cover the real material properties. The von Mises stress on the interface is also analyzed in order to improve the bonding strength between coating and substrate. The main contribution of this paper is to provide a method to determine the contact properties caused by different material and geometric properties of soft coating and substrate materials, which follow the power-law hardening properties.


2020 ◽  
Vol 10 (9) ◽  
pp. 3043
Author(s):  
Stefania Moscato ◽  
Antonella Rocca ◽  
Delfo D’Alessandro ◽  
Dario Puppi ◽  
Vera Gramigna ◽  
...  

The tympanic membrane (TM) primes the sound transmission mechanism due to special fibrous layers mainly of collagens II, III, and IV as a product of TM fibroblasts, while type I is less represented. In this study, human mesenchymal stromal cells (hMSCs) were cultured on star-branched poly(ε-caprolactone) (*PCL)-based nonwovens using a TM bioreactor and proper differentiating factors to induce the expression of the TM collagen types. The cell cultures were carried out for one week under static and dynamic conditions. Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) were used to assess collagen expression. A Finite Element Model was applied to calculate the stress distribution on the scaffolds under dynamic culture. Nanohydroxyapatite (HA) was used as a filler to change density and tensile strength of *PCL scaffolds. In dynamically cultured *PCL constructs, fibroblast surface marker was overexpressed, and collagen type II was revealed via IHC. Collagen types I, III and IV were also detected. Von Mises stress maps showed that during the bioreactor motion, the maximum stress in *PCL was double that in HA/*PCL scaffolds. By using a *PCL nonwoven scaffold, with suitable physico-mechanical properties, an oscillatory culture, and proper differentiative factors, hMSCs were committed into fibroblast lineage-producing TM-like collagens.


Sign in / Sign up

Export Citation Format

Share Document