An Analytical Study of the Structural Integrity of an LPG Storage Tank under Wind Load

2015 ◽  
Vol 741 ◽  
pp. 115-118 ◽  
Author(s):  
Bong Kwan Park ◽  
Jae Min Kim ◽  
Chang Min Keum ◽  
C. Kim ◽  
Heon Oh Choi

Since the wall thicknesses of most large LPG storage tanks are thin while their diameters are large, their structural integrity is one of the most important design factors. The tanks are mainly located near the waterfront for efficient transport and accessibility. This leads to exposure to wind loads, which should be considered in the design of the tanks. This paper describes an analytical technique for determining the structural integrity of a 45m diameter-LPG storage tank in the case of a wind load based on API 620 code. A finite element model for the tank was made using shell elements and analyzed under 50 m/s wind. The calculated maximum von-Mises stress was 103 MPa whereas the yield strength of tank’s material is 222 MPa. This result shows that the structural integrity of the tank is assured.

2022 ◽  
Vol 12 (2) ◽  
pp. 878
Author(s):  
Pedro O. Santos ◽  
Gustavo P. Carmo ◽  
Ricardo J. Alves de Sousa ◽  
Fábio A. O. Fernandes ◽  
Mariusz Ptak

The human head is sometimes subjected to impact loads that lead to skull fracture or other injuries that require the removal of part of the skull, which is called craniectomy. Consequently, the removed portion is replaced using autologous bone or alloplastic material. The aim of this work is to develop a cranial implant to fulfil a defect created on the skull and then study its mechanical performance by integrating it on a human head finite element model. The material chosen for the implant was PEEK, a thermoplastic polymer that has been recently used in cranioplasty. A6 numerical model head coupled with an implant was subjected to analysis to evaluate two parameters: the number of fixation screws that enhance the performance and ensure the structural integrity of the implant, and the implant’s capacity to protect the brain compared to the integral skull. The main findings point to the fact that, among all tested configurations of screws, the model with eight screws presents better performance when considering the von Mises stress field and the displacement field on the interface between the implant and the skull. Additionally, under the specific analyzed conditions, it is observable that the model with the implant offers more efficient brain protection when compared with the model with the integral skull.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niksa Mohammadi Bagheri ◽  
Mahmoud Kadkhodaei ◽  
Shiva Pirhadi ◽  
Peiman Mosaddegh

AbstractThe implementation of intracorneal ring segments (ICRS) is one of the successfully applied refractive operations for the treatment of keratoconus (kc) progression. The different selection of ICRS types along with the surgical implementation techniques can significantly affect surgical outcomes. Thus, this study aimed to investigate the influence of ICRS implementation techniques and design on the postoperative biomechanical state and keratometry results. The clinical data of three patients with different stages and patterns of keratoconus were assessed to develop a three-dimensional (3D) patient-specific finite-element model (FEM) of the keratoconic cornea. For each patient, the exact surgery procedure definitions were interpreted in the step-by-step FEM. Then, seven surgical scenarios, including different ICRS designs (complete and incomplete segment), with two surgical implementation methods (tunnel incision and lamellar pocket cut), were simulated. The pre- and postoperative predicted results of FEM were validated with the corresponding clinical data. For the pre- and postoperative results, the average error of 0.4% and 3.7% for the mean keratometry value ($$\text {K}_{\text{mean}}$$ K mean ) were predicted. Furthermore, the difference in induced flattening effects was negligible for three ICRS types (KeraRing segment with arc-length of 355, 320, and two separate 160) of equal thickness. In contrast, the single and double progressive thickness of KeraRing 160 caused a significantly lower flattening effect compared to the same type with constant thickness. The observations indicated that the greater the segment thickness and arc-length, the lower the induced mean keratometry values. While the application of the tunnel incision method resulted in a lower $$\text {K}_{\text{mean}}$$ K mean value for moderate and advanced KC, the induced maximum Von Mises stress on the postoperative cornea exceeded the induced maximum stress on the cornea more than two to five times compared to the pocket incision and the preoperative state of the cornea. In particular, an asymmetric regional Von Mises stress on the corneal surface was generated with a progressive ICRS thickness. These findings could be an early biomechanical sign for a later corneal instability and ICRS migration. The developed methodology provided a platform to personalize ICRS refractive surgery with regard to the patient’s keratoconus stage in order to facilitate the efficiency and biomechanical stability of the surgery.


Author(s):  
Armando Félix Quiñonez ◽  
Guillermo E Morales Espejel

This work investigates the transient effects of a single subsurface inclusion over the pressure, film thickness, and von Mises stress in a line elastohydrodynamic lubrication contact. Results are obtained with a fully-coupled finite element model for either a stiff or a soft inclusion moving at the speed of the surface. Two cases analyzed consider the inclusion moving either at the same speed as the mean velocity of the lubricant or moving slower. Two additional cases investigate reducing either the size of the inclusion or its stiffness differential with respect to the matrix. It is shown that the well-known two-wave elastohydrodynamic lubrication mechanism induced by surface features is also applicable to the inclusions. Also, that the effects of the inclusion become weaker both when its size is reduced and when its stiffness approaches that of the matrix. A direct comparison with predictions by the semi-analytical model of Morales-Espejel et al. ( Proc IMechE, Part J: J Engineering Tribology 2017; 231) shows reasonable qualitative agreement. Quantitatively some differences are observed which, after accounting for the semi-analytical model's simplicity, physical agreement, and computational efficiency, may then be considered as reasonable for engineering applications.


2013 ◽  
Vol 845 ◽  
pp. 403-407
Author(s):  
Natesan Dhandapani ◽  
A. Gnanavelbabu ◽  
M. Sivasankar

In this changing global scenario, modification, transplantation, and replacement can be the eternal solution for most of the problems in the medical field. Hence replacement technique finds a very prominent place in medicine as a remedy having closely tied up with biomechanics. One of the most important joints in the human body is the hip joint, the big and complex joint. Many researches were conducted and many are in progress, but most of these works use simplified models with either 2D or 3D approaches. The hip joint is formed by four components like femoral head cortical bone, stem, and neck. In this system we can find orthotropic and isotropic materials working together. The main objective of this research is to develop a three dimensional surface and solid finite element model of the hip joint to predict stresses in its individual components. This model is a geometric non-linear model, which helps us understand its structural mechanical behavior, seeming to suggest with advanced research in the future new hip joint prosthesis, as well as to prove the prosthesis joint interaction before being implanted in the patient. This research explains a complete human hip joint model without cartilaginous tissue, using ANSYS 10.0 Multiphysics Analysis for nine different postures in hip joint using three different materials (CoCr, Ti6Al4V, and UHMWPE) to calculate fatigue life. The result obtained from the analysis of surface model and solid model serve to help in predicting the life cycle, surface characteristics, shear stress in XY plane, stress concentration and areas that are prone to failure. Von Mises stress on the surface of our model facilitates us to equip and design an optimized prosthesis device having unique materials composition , with a highly bio-compatible and durable alloy at a low cost could be produced. In this way, a first important step towards the structural characterization of human hip joint has been developed.


2021 ◽  
Author(s):  
Sinan Yıldırım ◽  
Ufuk Çoban ◽  
Mehmet Çevik

Suspension linkages are one of the fundamental structural elements in each vehicle since they connect the wheel carriers i.e. axles to the body of the vehicle. Moreover, the characteristics of suspension linkages within a suspension system can directly affect driving safety, comfort and economics. Beyond these, all these design criteria are bounded to the package space of the vehicle. In last decades, suspension linkages have been focused on in terms of design development and cost reduction. In this study, a control arm of a diesel public bus was taken into account in order to get the most cost-effective design while improving the strength within specified boundary conditions. Due to the change of the supplier, the control arm of a rigid axle was redesigned to find an economical and more durable solution. The new design was analyzed first by the finite element analysis software Ansys and the finite element model of the control arm was validated by physical tensile tests. The outputs of the study demonstrate that the new design geometry reduces the maximum Von Mises stress 15% while being within the elastic region of the material in use and having found an economical solution in terms of supplier’s criteria.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Yi Wang ◽  
Yi Cui ◽  
Shuo Liu ◽  
Xinhui Wang ◽  
Xinwei Tian ◽  
...  

Abstract In this paper, the flattening process of a coated single asperity by a rigid flat is studied based on a two-dimensional finite element model under different contact interferences. The soft coating and hard substrate materials of the main bearing shell in a medium-speed vehicle diesel engine are both considered to follow the power-law hardening elastic-plastic properties. For both loading and unloading processes, the effects of geometrical and material properties, including the coating thickness, Young’s modulus, Poisson’s ratio, yielding stress, and hardening exponent, on the contact behaviors are studied in a wide range to cover the real material properties. The von Mises stress on the interface is also analyzed in order to improve the bonding strength between coating and substrate. The main contribution of this paper is to provide a method to determine the contact properties caused by different material and geometric properties of soft coating and substrate materials, which follow the power-law hardening properties.


2020 ◽  
Vol 10 (9) ◽  
pp. 3043
Author(s):  
Stefania Moscato ◽  
Antonella Rocca ◽  
Delfo D’Alessandro ◽  
Dario Puppi ◽  
Vera Gramigna ◽  
...  

The tympanic membrane (TM) primes the sound transmission mechanism due to special fibrous layers mainly of collagens II, III, and IV as a product of TM fibroblasts, while type I is less represented. In this study, human mesenchymal stromal cells (hMSCs) were cultured on star-branched poly(ε-caprolactone) (*PCL)-based nonwovens using a TM bioreactor and proper differentiating factors to induce the expression of the TM collagen types. The cell cultures were carried out for one week under static and dynamic conditions. Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) were used to assess collagen expression. A Finite Element Model was applied to calculate the stress distribution on the scaffolds under dynamic culture. Nanohydroxyapatite (HA) was used as a filler to change density and tensile strength of *PCL scaffolds. In dynamically cultured *PCL constructs, fibroblast surface marker was overexpressed, and collagen type II was revealed via IHC. Collagen types I, III and IV were also detected. Von Mises stress maps showed that during the bioreactor motion, the maximum stress in *PCL was double that in HA/*PCL scaffolds. By using a *PCL nonwoven scaffold, with suitable physico-mechanical properties, an oscillatory culture, and proper differentiative factors, hMSCs were committed into fibroblast lineage-producing TM-like collagens.


2014 ◽  
Vol 607 ◽  
pp. 713-716
Author(s):  
Wen Liang Tang ◽  
Chun Yue Huang ◽  
Tian Ming Li ◽  
Ying Liang ◽  
Guo Ji Xiong ◽  
...  

In this paper, ANSYS-LSDYNA simulation software is used to build the three-dimensional finite element model of the ball bond and to get the Von Mises stress. The change of stress about the bump is researched which base on the model in different bonding pressure, bonding power and bonding time. The result show that: The stress increase with bonding pressure increase within a certain bonding pressure range, and then the stress will maintain a table number, however, the stress will continue to increase when the bonding pressure reach a certain value; increasing the bonding power, the area of lager stress will grow; prolonging the bonding time, the stress of the pad will increase with time, but when time increase to a certain value, the stress of the pad will not increase over time.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Z. Q. Zhang ◽  
J. L. Yang

Background. Cranial sutures are deformable joints between the bones of the skull, bridged by collagen fibres. They function to hold the bones of the skull together while allowing for mechanical stress transmission and deformation.Objective. The aim of this study is to investigate how cranial suture morphology, suture material property, and the arrangement of sutural collagen fibres influence the dynamic responses of the suture and surrounding bone under impulsive loads.Methods. An idealized bone-suture-bone complex was analyzed using a two-dimensional finite element model. A uniform impulsive loading was applied to the complex. Outcome variables of von Mises stress and strain energy were evaluated to characterize the sutures’ biomechanical behavior.Results. Parametric studies revealed that the suture strain energy and the patterns of Mises stress in both the suture and surrounding bone were strongly dependent on the suture morphologies.Conclusions. It was concluded that the higher order hierarchical suture morphology, lower suture elastic modulus, and the better collagen fiber orientation must benefit the stress attenuation and energy absorption.


Author(s):  
Xiaoben Liu ◽  
Hong Zhang ◽  
Mengying Xia ◽  
Yanfei Chen ◽  
Kai Wu ◽  
...  

Pipelines in service always experience complicated loadings induced by operational and environmental conditions. Flood is one of the common natural hazard threats for buried steel pipelines. One exposed river crossing X70 gas pipeline induced by flood erosion was used as a prototype for this study. A mechanical model was established considering the field loading conditions. Morison equations were adopted to calculate distributional hydrodynamic loads on spanning pipe caused by flood flow. Nonlinear soil constraint on pipe was considered using discrete nonlinear soil springs. An explicit solution of bending stiffness for pipe segment with casing was derived and applied to the numerical model. The von Mises yield criterion was used as failure criteria of the X70 pipe. Stress behavior of the pipe were analyzed by a rigorous finite element model established by the general-purpose Finite-Element package ABAQUS, with 3D pipe elements and pipe-soil interaction elements simulating pipe and soil constraints on pipe, respectively. Results show that, the pipe is safe at present, as the maximum von Mises stress in pipe with the field parameters is 185.57 MPa. The critical flow velocity of the pipe is 5.8 m/s with the present spanning length. The critical spanning length of the pipe is 467 m with the present flow velocity. The failure pipe sections locate at the connection point of the bare pipe and the pipe with casing or the supporting point of the bare pipe on riverbed.


Sign in / Sign up

Export Citation Format

Share Document