scholarly journals Gait Energy Response Functions for Gait Recognition against Various Clothing and Carrying Status

2018 ◽  
Vol 8 (8) ◽  
pp. 1380 ◽  
Author(s):  
Xiang Li ◽  
Yasushi Makihara ◽  
Chi Xu ◽  
Daigo Muramatsu ◽  
Yasushi Yagi ◽  
...  

Silhouette-based gait representations are widely used in the current gait recognition community due to their effectiveness and efficiency, but they are subject to changes in covariate conditions such as clothing and carrying status. Therefore, we propose a gait energy response function (GERF) that transforms a gait energy (i.e., an intensity value) of a silhouette-based gait feature into a value more suitable for handling these covariate conditions. Additionally, since the discrimination capability of gait energies, as well as the degree to which they are affected by the covariate conditions, differs among body parts, we extend the GERF framework to spatially dependent GERF (SD-GERF) which accounts for spatial dependence. Moreover, the proposed GERFs are represented as a vector in the transformation lookup table and are optimized through an efficient generalized eigenvalue problem in a closed form. Finally, two post-processing techniques, Gabor filtering and spatial metric learning, are employed for the transformed gait features to boost the accuracy. Experimental results with three publicly available datasets including clothing and carrying status variations show the state-of-the-art performance of the proposed method compared with other state-of-the-art methods.

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255927
Author(s):  
Yumi Iwashita ◽  
Hitoshi Sakano ◽  
Ryo Kurazume ◽  
Adrian Stoica

This paper introduces an enhanced MSM (Mutual Subspace Method) methodology for gait recognition, to provide robustness to variations in walking speed. The enhanced MSM (eMSM) methodology expands and adapts the MSM, commonly used for face recognition, which is a static/physiological biometric, to gait recognition, which is a dynamic/behavioral biometrics. To address the loss of accuracy during calculation of the covariance matrix in the PCA step of MSM, we use a 2D PCA-based mutual subspace. Furhtermore, to enhance the discrimination capability, we rotate images over a number of angles, which enables us to extract richer gait features to then be fused by a boosting method. The eMSM methodology is evaluated on existing data sets which provide variable walking speed, i.e. CASIA-C and OU-ISIR gait databases, and it is shown to outperform state-of-the art methods. While the enhancement to MSM discussed in this paper uses combinations of 2D-PCA, rotation, boosting, other combinations of operations may also be advantageous.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 567
Author(s):  
Donghun Yang ◽  
Kien Mai Mai Ngoc ◽  
Iksoo Shin ◽  
Kyong-Ha Lee ◽  
Myunggwon Hwang

To design an efficient deep learning model that can be used in the real-world, it is important to detect out-of-distribution (OOD) data well. Various studies have been conducted to solve the OOD problem. The current state-of-the-art approach uses a confidence score based on the Mahalanobis distance in a feature space. Although it outperformed the previous approaches, the results were sensitive to the quality of the trained model and the dataset complexity. Herein, we propose a novel OOD detection method that can train more efficient feature space for OOD detection. The proposed method uses an ensemble of the features trained using the softmax-based classifier and the network based on distance metric learning (DML). Through the complementary interaction of these two networks, the trained feature space has a more clumped distribution and can fit well on the Gaussian distribution by class. Therefore, OOD data can be efficiently detected by setting a threshold in the trained feature space. To evaluate the proposed method, we applied our method to various combinations of image datasets. The results show that the overall performance of the proposed approach is superior to those of other methods, including the state-of-the-art approach, on any combination of datasets.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 967
Author(s):  
Amirreza Mahbod ◽  
Gerald Schaefer ◽  
Christine Löw ◽  
Georg Dorffner ◽  
Rupert Ecker ◽  
...  

Nuclei instance segmentation can be considered as a key point in the computer-mediated analysis of histological fluorescence-stained (FS) images. Many computer-assisted approaches have been proposed for this task, and among them, supervised deep learning (DL) methods deliver the best performances. An important criterion that can affect the DL-based nuclei instance segmentation performance of FS images is the utilised image bit depth, but to our knowledge, no study has been conducted so far to investigate this impact. In this work, we released a fully annotated FS histological image dataset of nuclei at different image magnifications and from five different mouse organs. Moreover, by different pre-processing techniques and using one of the state-of-the-art DL-based methods, we investigated the impact of image bit depth (i.e., eight bits vs. sixteen bits) on the nuclei instance segmentation performance. The results obtained from our dataset and another publicly available dataset showed very competitive nuclei instance segmentation performances for the models trained with 8 bit and 16 bit images. This suggested that processing 8 bit images is sufficient for nuclei instance segmentation of FS images in most cases. The dataset including the raw image patches, as well as the corresponding segmentation masks is publicly available in the published GitHub repository.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Wei Yang ◽  
Luhui Xu ◽  
Xiaopan Chen ◽  
Fengbin Zheng ◽  
Yang Liu

Learning a proper distance metric for histogram data plays a crucial role in many computer vision tasks. The chi-squared distance is a nonlinear metric and is widely used to compare histograms. In this paper, we show how to learn a general form of chi-squared distance based on the nearest neighbor model. In our method, the margin of sample is first defined with respect to the nearest hits (nearest neighbors from the same class) and the nearest misses (nearest neighbors from the different classes), and then the simplex-preserving linear transformation is trained by maximizing the margin while minimizing the distance between each sample and its nearest hits. With the iterative projected gradient method for optimization, we naturally introduce thel2,1norm regularization into the proposed method for sparse metric learning. Comparative studies with the state-of-the-art approaches on five real-world datasets verify the effectiveness of the proposed method.


Author(s):  
Di Wu ◽  
Xiao-Yuan Jing ◽  
Haowen Chen ◽  
Xiaohui Kong ◽  
Jifeng Xuan

Application Programming Interface (API) tutorial is an important API learning resource. To help developers learn APIs, an API tutorial is often split into a number of consecutive units that describe the same topic (i.e. tutorial fragment). We regard a tutorial fragment explaining an API as a relevant fragment of the API. Automatically recommending relevant tutorial fragments can help developers learn how to use an API. However, existing approaches often employ supervised or unsupervised manner to recommend relevant fragments, which suffers from much manual annotation effort or inaccurate recommended results. Furthermore, these approaches only support developers to input exact API names. In practice, developers often do not know which APIs to use so that they are more likely to use natural language to describe API-related questions. In this paper, we propose a novel approach, called Tutorial Fragment Recommendation (TuFraRec), to effectively recommend relevant tutorial fragments for API-related natural language questions, without much manual annotation effort. For an API tutorial, we split it into fragments and extract APIs from each fragment to build API-fragment pairs. Given a question, TuFraRec first generates several clarification APIs that are related to the question. We use clarification APIs and API-fragment pairs to construct candidate API-fragment pairs. Then, we design a semi-supervised metric learning (SML)-based model to find relevant API-fragment pairs from the candidate list, which can work well with a few labeled API-fragment pairs and a large number of unlabeled API-fragment pairs. In this way, the manual effort for labeling the relevance of API-fragment pairs can be reduced. Finally, we sort and recommend relevant API-fragment pairs based on the recommended strategy. We evaluate TuFraRec on 200 API-related natural language questions and two public tutorial datasets (Java and Android). The results demonstrate that on average TuFraRec improves NDCG@5 by 0.06 and 0.09, and improves Mean Reciprocal Rank (MRR) by 0.07 and 0.09 on two tutorial datasets as compared with the state-of-the-art approach.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 384
Author(s):  
António Gaspar-Cunha ◽  
José A. Covas ◽  
Janusz Sikora

Given the global economic and societal importance of the polymer industry, the continuous search for improvements in the various processing techniques is of practical primordial importance. This review evaluates the application of optimization methodologies to the main polymer processing operations. The most important characteristics related to the usage of optimization techniques, such as the nature of the objective function, the type of optimization algorithm, the modelling approach used to evaluate the solutions, and the parameters to optimize, are discussed. The aim is to identify the most important features of an optimization system for polymer processing problems and define the best procedure for each particular practical situation. For this purpose, the state of the art of the optimization methodologies usually employed is first presented, followed by an extensive review of the literature dealing with the major processing techniques, the discussion being completed by considering both the characteristics identified and the available optimization methodologies. This first part of the review focuses on extrusion, namely single and twin-screw extruders, extrusion dies, and calibrators. It is concluded that there is a set of methodologies that can be confidently applied in polymer processing with a very good performance and without the need of demanding computation requirements.


Author(s):  
Kaixuan Chen ◽  
Lina Yao ◽  
Dalin Zhang ◽  
Bin Guo ◽  
Zhiwen Yu

Multi-modality is an important feature of sensor based activity recognition. In this work, we consider two inherent characteristics of human activities, the spatially-temporally varying salience of features and the relations between activities and corresponding body part motions. Based on these, we propose a multi-agent spatial-temporal attention model. The spatial-temporal attention mechanism helps intelligently select informative modalities and their active periods. And the multiple agents in the proposed model represent activities with collective motions across body parts by independently selecting modalities associated with single motions. With a joint recognition goal, the agents share gained information and coordinate their selection policies to learn the optimal recognition model. The experimental results on four real-world datasets demonstrate that the proposed model outperforms the state-of-the-art methods.


Author(s):  
Lixin Fan ◽  
Kam Woh Ng ◽  
Ce Ju ◽  
Tianyu Zhang ◽  
Chee Seng Chan

This paper proposes a novel deep polarized network (DPN) for learning to hash, in which each channel in the network outputs is pushed far away from zero by employing a differentiable bit-wise hinge-like loss which is dubbed as polarization loss. Reformulated within a generic Hamming Distance Metric Learning framework [Norouzi et al., 2012], the proposed polarization loss bypasses the requirement to prepare pairwise labels for (dis-)similar items and, yet, the proposed loss strictly bounds from above the pairwise Hamming Distance based losses. The intrinsic connection between pairwise and pointwise label information, as disclosed in this paper, brings about the following methodological improvements: (a) we may directly employ the proposed differentiable polarization loss with no large deviations incurred from the target Hamming distance based loss; and (b) the subtask of assigning binary codes becomes extremely simple --- even random codes assigned to each class suffice to result in state-of-the-art performances, as demonstrated in CIFAR10, NUS-WIDE and ImageNet100 datasets.


Sign in / Sign up

Export Citation Format

Share Document