scholarly journals Effect of Sediment Concentration on Hydraulic Characteristics of Energy Dissipation in a Falling Turbulent Jet

2018 ◽  
Vol 8 (9) ◽  
pp. 1672 ◽  
Author(s):  
Wenjuan Gou ◽  
Huiping Li ◽  
Yunyi Du ◽  
Hongxia Yin ◽  
Fang Liu ◽  
...  

The effect of sediment on the hydraulics of jet energy dissipation is an urgent issue for high dams built on sediment-laden rivers. Accordingly, flume experiments were conducted using a ski-jump type energy dissipator in flows of four sediment concentrations (0 kg/m3, 50 kg/m3, 150 kg/m3, and 250 kg/m3) to determine the effects on discharge, flow regime, and hydrodynamic pressure in a plunge pool. The results demonstrate that the effect of sediment on discharge is constant, regardless of sediment concentration, when compared to fresh water. The width of the nappe decreased with increasing concentrations of sediment. The length of the jet trajectory increased with upstream water head. The time-averaged pressure and fluctuation pressure both exhibited peaks, describing the impact of the jet on the bottom of the plunge pool. The maximum time-averaged pressure and maximum fluctuating pressure both noticeably increased with upstream water head and slightly increased with sediment concentration for a given flow condition. The results also demonstrated that the dominant frequency of fluctuation trends to lower values, and that both the fluctuating energy and vortex scale increase with increasing sediment concentrations due to increased viscosity. These findings can be used to improve energy dissipation in dams on sediment-laden rivers.

2020 ◽  
Vol 10 (4) ◽  
pp. 1332
Author(s):  
Jijian Lian ◽  
Hongxia Yin ◽  
Fang Liu ◽  
Huiping Li ◽  
Wenjuan Gou

Finding an appropriate shape for the releasing building is thoroughly relevant given the energy dissipation and safety requirements of a high dam in a sediment-laden river. Thirty-six physical experiments on trajectory energy dissipation were conducted, researching the influence of three overflow shapes (contraction ratios of 0.5, 0.4, and 0.3) with four sediment concentrations (0, 50, 150, and 250 kg/m3) on the discharge, flow regime, and hydrodynamic pressure of a plunge pool slab. The experimental results demonstrated that the flow coefficient gradually decreased as the contraction ratio decreased in a relatively high weir head, regardless of the sediment concentration. The water nappe narrowed and the length of the longitudinal trajectory increased as the outlet shrinkage and sediment concentration decreased. With the increase in sediment concentration, the nappe regime approached stability, and the flow in the plunge pool tended toward small rolling, causing the impact pressure and fluctuating pressure to increase. Changes in overflow shape had little effect on the position of pressure peak, but the value became lower as the ratio diminished. The influence on the hydrodynamic pressure by outlet shrinkage became attenuated while the sediment concentration increased. The fluctuating energy and vortex scale were enhanced due to the increased viscosity with increasing sediment concentrations.


2019 ◽  
Vol 20 (1) ◽  
pp. 209-218
Author(s):  
Yu Wang ◽  
Yaan Hu ◽  
Jinde Gu ◽  
Yu Peng ◽  
Yang Xue

Abstract In view of high water head and large discharge in the release structures of hydraulic projects, the inverted arch plunge pool has been put forward due to higher overload capability and stability. Impact pressure on the bottom is a serious concern in design safety precautions, however, the quantitative impact pressure distribution in the inverted arch plunge pool is not yet elucidated. In this study, a novel approach is presented to estimate the impact pressure of an inverted arch plunge pool. Impact pressure characteristics are experimentally investigated under different hydraulic conditions. The results detailed the effect of relative discharge coefficient and the deflection angle relative to the vertical central axis of the plunge pool bottom. The predicting formulas of impact pressure distribution are derived within small relative errors, and the proposed approaches have good applicability in three case studies. The achievements of this investigation are used to define issuance parameters relevant for engineering practice.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 45
Author(s):  
Maolin Zhou ◽  
Xin Li ◽  
Jianmin Zhang ◽  
Weilin Xu

Hydrodynamic pressure exerted on a plunge pool slab by jet impingement is of high interest in high dam projects. The present study experimentally investigated the characteristics of pressure induced by a jet through a constant width flip bucket (CFB) and a slit flip bucket (SFB). A pressurized plane pipe was employed in the flume experiments to control the inlet velocities in the flip buckets. A concise method is proposed to predict the mean dynamic pressure field. Its implementation is summarized as follows: First, the position of the pressure field is determined by the trajectories of free jets, and to calculate its trajectories, an equation based on parabolic trajectory theory is used; second, the maximum mean dynamic pressure is obtained through dimensional analysis, and then the pressure field is established by applying the law of Gaussian distribution. Those steps are integrated into a concise computing procedure by using some easy-to-obtain parameters. Some key parameters, such as takeoff velocity coefficient, takeoff angle coefficient, and the parameter k2, are also investigated in this paper. The formulas of these coefficients are obtained by fitting the experimental data. Using the proposed method, the easy-to-obtain geometric parameters and initial hydraulic conditions can be used to calculate the maximum mean dynamic pressure on the slab. A comparison between experimental data and calculated results confirmed the practicability of this model. These research results provide a reference for hydraulic applications.


2021 ◽  
Vol 128 (1) ◽  
Author(s):  
Michael J. Negus ◽  
Matthew R. Moore ◽  
James M. Oliver ◽  
Radu Cimpeanu

AbstractThe high-speed impact of a droplet onto a flexible substrate is a highly non-linear process of practical importance, which poses formidable modelling challenges in the context of fluid–structure interaction. We present two approaches aimed at investigating the canonical system of a droplet impacting onto a rigid plate supported by a spring and a dashpot: matched asymptotic expansions and direct numerical simulation (DNS). In the former, we derive a generalisation of inviscid Wagner theory to approximate the flow behaviour during the early stages of the impact. In the latter, we perform detailed DNS designed to validate the analytical framework, as well as provide insight into later times beyond the reach of the proposed analytical model. Drawing from both methods, we observe the strong influence that the mass of the plate, resistance of the dashpot, and stiffness of the spring have on the motion of the solid, which undergo forced damped oscillations. Furthermore, we examine how the plate motion affects the dynamics of the droplet, predominantly through altering its internal hydrodynamic pressure distribution. We build on the interplay between these techniques, demonstrating that a hybrid approach leads to improved model and computational development, as well as result interpretation, across multiple length and time scales.


2021 ◽  
Vol 13 (1) ◽  
pp. 651-662
Author(s):  
Jinping Luo ◽  
Guoxiang Huang ◽  
Yanni Shao ◽  
Jian Liu ◽  
Quanyi Xie

Abstract Plain reservoir plays an important role in alleviating water shortage in plain areas which are generally crowded with large populations. As an effective and cheap anti-seepage measure, geomembrane is widely applied in plain reservoirs. Therefore, it is necessary to investigate the seepage discharge caused by composite geomembrane leakage. The laboratory test and numerical calculation are carried out in this paper to analyze the influence of three factors (i.e., water head, leakage size, and leakage location) on seepage discharge. It is found from the results of the orthogonal and single-factor analysis that the impact order of the three factors on the seepage discharge of plain reservoir is: distance from dam toe > water head > leakage size. Moreover, the seepage discharge increases as the water head, leakage size, and leakage quantity increase, in a linear relation. The opposite trend can be sawed in the seepage discharge when the distance from dam toe rises. Furthermore, a threshold distance is innovatively presented based on the results of numerical analysis. The ranking of three factors has enlightening significance for future scholars to track and study key issues of the leakage of composite geomembrane. The threshold distance presented in this paper is beneficial for engineers to manage and maintain the reservoir. Generally, the findings of this study can be beneficial to deepen the understanding of the influence of composite geomembrane leakage on the plain reservoirs.


Tribologia ◽  
2021 ◽  
Vol 297 (3) ◽  
pp. 35-44
Author(s):  
Yuliia Tarasevych ◽  
Nataliia SOVENKO

Face throttles are a necessary functional element of non-contact face seals and automatic balancing devices of centrifugal pumps of different constructions. To calculate the hydrodynamic forces and moments acting on the rotor and fluid flow through the automatic balancing device, it is necessary to know the pressure distribution in the cylindrical and face throttle when considering all important factors which predetermine fluid flow. The face throttle surfaces are moving, which leads to unsteady fluid flow. The movement of the walls of the face throttle causes an additional circumferential and radial flow, which subsequently leads to the additional hydrodynamic pressure components. The paper analyses viscous incompressible fluid flow in the face throttle of an automatic balancing device taking into account the axial and angular displacements of throttle’s surfaces and the inertia component of the fluid. The effect of local hydraulic losses as well as random changes in the coefficients of local hydraulic resistance at the inlet and outlet of the throttle is analysed.


2019 ◽  
Vol 9 (4) ◽  
pp. 632 ◽  
Author(s):  
Peng Zhang ◽  
Devendra Patil ◽  
Siu Ho

The pounding tuned mass damper (PTMD) is a novel vibration control device that can effectively mitigate the undesired vibration of subsea pipeline structures. Previous studies have verified that the PTMD is more effective and robust compared to the traditional tuned mass damper. However, the PTMD relies on a viscoelastic delimiter to dissipate energy through impact. The viscoelastic material can be corroded by the various chemical substances dissolved in the seawater, which means that there can be possible deterioration in its mechanical property and damping ability when it is exposed to seawater. Therefore, we aim to conduct an experimental study on the impact behavior and energy dissipation of the viscoelastic material submerged in seawater in this present paper. An experimental apparatus, which can generate and measure lateral impact, is designed and fabricated. A batch of viscoelastic tapes are submerged in seawater and samples will be taken out for impact tests every month. Pounding stiffness, hysteresis loops and energy dissipated per impact cycle are employed to characterize the impact behavior of the viscoelastic material. The experimental results suggest that the seawater has little influence on the behavior of the viscoelastic tapes. Even after continuous submersion in seawater for 5 years, the pounding stiffness and energy dissipation remains at the same level.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Lifang Zhang ◽  
Jianmin Zhang ◽  
Yakun Guo ◽  
Yong Peng

In this study, the evolution process of the swallow-tailed flip bucket water nappe entering into the plunge pool is simulated by using the standard k-ε turbulence model and the volume-of-fluid method. The effects of the upstream opening width ratio and downstream bucket angle on the flow pattern, the unit discharge distribution, and the impact pressure distribution are studied. Based on the numerical results, the inner and outer jet trajectories are proposed by using the data. Results show that the longitudinal stretching length decreases with the increase of the upstream opening width ratio and increases with the increase of the downstream bucket angle. The water nappe enters the plunge pool in a long strip shape. Thus, the unit discharge distribution of water nappe entry is consistent with the pressure distribution at the plunge pool bottom. The upstream opening width ratio and downstream bucket angle should be chosen as their intermediate values in order to have a uniform discharge distribution and to reduce the pressure peak at the plunge pool floor, which is effectively to avoid instability and destruction of plunge pool floor.


2019 ◽  
Vol 9 (7) ◽  
pp. 1481 ◽  
Author(s):  
Shangshun Lin ◽  
Zhanghua Xia ◽  
Jian Xia

The large degradation of the mechanical performance of hollow reinforced concrete (RC) bridge piers subjected to multi-dimensional earthquakes has not been thoroughly assessed. This paper aims to improve the existing seismic damage model to assess the seismic properties of tall, hollow RC piers subjected to pseudo-static, biaxial loading. Cyclic bilateral loading tests on fourteen 1/14-scale pier specimens with different slenderness ratios, axial load ratios, and transverse reinforcement ratios were carried out to investigate the damage propagation and the cumulative dissipated energy with displacement loads. By considering the influence of energy dissipation on structural damage, a new damage model (M-Usami model) was developed to assess the damage characteristics of hollow RC piers. The results present four consecutive damage stages during the loading process: (a) cracking on concrete surface, (b) yielding of longitudinal reinforcements; (c) spalling of concrete, and (d) collapsing of pier after the concrete crushed and the longitudinal bars ruptured due to the flexural failure. The damage level caused by the seismic waves can be reduced by designing specimens with a good seismic energy dissipation capacity. The theoretical damage index values calculated by the M-Usami model agreed well with the experimental observations. The developed M-Usami model can provide insights into the approaches to assessing the seismic damage of hollow RC piers subjected to bilateral seismic excitations.


Sign in / Sign up

Export Citation Format

Share Document