scholarly journals Real-Time HIFU Treatment Monitoring Using Pulse Inversion Ultrasonic Imaging

2018 ◽  
Vol 8 (11) ◽  
pp. 2219 ◽  
Author(s):  
Eui-Ji Shin ◽  
Byungwoo Kang ◽  
Jin Chang

Real-time monitoring of high-intensity focused ultrasound (HIFU) surgery is essential for safe and accurate treatment. However, ultrasound imaging is difficult to use for treatment monitoring during HIFU surgery because of the high intensity of the HIFU echoes that are received by an imaging transducer. Here, we propose a real-time HIFU treatment monitoring method based on pulse inversion of imaging ultrasound; an imaging transducer fires ultrasound twice in 0° and 180° phases for one scanline while HIFUs of the same phase are transmitted in synchronization with the ultrasound transmission for imaging. By doing so, HIFU interferences can be eliminated after subtracting the two sets of the signals received by the imaging transducer. This function was implemented in a commercial research ultrasound scanner, and its performance was evaluated using the excised bovine liver. The experimental results demonstrated that the proposed method allowed ultrasound images to clearly show the echogenicity change induced by HIFU in the excised bovine liver. Additionally, it was confirmed that the moving velocity of the organs in the abdomen due to respiration does not affect the performance of the proposed method. Based on the experimental results, we believe that the proposed method can be used for real-time HIFU surgery monitoring that is a pivotal function for maximized treatment efficacy.

Author(s):  
Ryo Takagi ◽  
Toshikatsu Washio ◽  
Yoshihiko Koseki

Abstract Purpose In this study, the robustness and feasibility of a noise elimination method using continuous wave response of therapeutic ultrasound signals were investigated when tissue samples were moved to simulate the respiration-induced movements of the different organs during actual high-intensity focused ultrasound (HIFU) treatment. In addition to that, the failure conditions of the proposed algorithm were also investigated. Methods The proposed method was applied to cases where tissue samples were moved along both the lateral and axial directions of the HIFU transducer to simulate respiration-induced motions during HIFU treatment, and the noise reduction level was investigated. In this experiment, the speed of movement was increased from 10 to 40 mm/s to simulate the actual movement of the tissue during HIFU exposure, with the intensity and driving frequency of HIFU set to 1.0–5.0 kW/cm2 and 1.67 MHz, respectively. To investigate the failure conditions of the proposed algorithm, the proposed method was applied with the HIFU focus located at the boundary between the phantom and water to easily cause cavitation bubbles. The intensity of HIFU was set to 10 kW/cm2. Results Almost all HIFU noise was constantly able to be eliminated using the proposed method when the phantom was moved along the lateral and axial directions during HIFU exposure. The noise reduction level (PRL in this study) at an intensity of 1.0, 3.0, and 5.0 kW/cm2 was in the range of 28–32, 38–40, and 42–45 dB, respectively. On the other hand, HIFU noise was not basically eliminated during HIFU exposure after applying the proposed method in the case of cavitation generation at the HIFU focus. Conclusions The proposed method can be applicable even if homogeneous tissues or organs move axially or laterally to the direction of HIFU exposure because of breathing. A condition under which the proposed algorithm failed was when instantaneous tissue changes such as cavitation bubble generation occurred in the tissue, at which time the reflected continuous wave response became less steady.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yufeng Zhou

Pancreatic cancer is under high mortality but has few effective treatment modalities. High-intensity focused ultrasound (HIFU) is becoming an emerging approach of noninvasively ablating solid tumor in clinics. A variety of solid tumors have been tried on thousands of patients in the last fifteen years with great success. The principle, mechanism, and clinical outcome of HIFU were introduced first. All 3022 clinical cases of HIFU treatment for the advanced pancreatic cancer alone or in combination with chemotherapy or radiotherapy in 241 published papers were reviewed and summarized for its efficacy, pain relief, clinical benefit rate, survival, Karnofsky performance scale (KPS) score, changes in tumor size, occurrence of echogenicity, serum level, diagnostic assessment of outcome, and associated complications. Immune response induced by HIFU ablation may become an effective way of cancer treatment. Comments for a better outcome and current challenges of HIFU technology are also covered.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
A. Vargas-Olivares ◽  
O. Navarro-Hinojosa ◽  
M. Maqueo-Vicencio ◽  
L. Curiel ◽  
M. Alencastre-Miranda ◽  
...  

High-intensity focused ultrasound (HIFU) is a minimally invasive therapy modality in which ultrasound beams are concentrated at a focal region, producing a rise of temperature and selective ablation within the focal volume and leaving surrounding tissues intact. HIFU has been proposed for the safe ablation of both malignant and benign tissues and as an agent for drug delivery. Magnetic resonance imaging (MRI) has been proposed as guidance and monitoring method for the therapy. The identification of regions of interest is a crucial procedure in HIFU therapy planning. This procedure is performed in the MR images. The purpose of the present research work is to implement a time-efficient and functional segmentation scheme, based on the watershed segmentation algorithm, for the MR images used for the HIFU therapy planning. The achievement of a segmentation process with functional results is feasible, but preliminary image processing steps are required in order to define the markers for the segmentation algorithm. Moreover, the segmentation scheme is applied in parallel to an MR image data set through the use of a thread pool, achieving a near real-time execution and making a contribution to solve the time-consuming problem of the HIFU therapy planning.


Sign in / Sign up

Export Citation Format

Share Document