scholarly journals Adaptive Framework for Multi-Feature Hybrid Object Tracking

2018 ◽  
Vol 8 (11) ◽  
pp. 2294 ◽  
Author(s):  
Ahmad Khattak ◽  
Gulistan Raja ◽  
Nadeem Anjum

Object tracking is a computer vision task deemed necessary for high-level intelligent decision-making algorithms. Researchers have merged different object tracking techniques and discovered a new class of hybrid algorithms that is based on embedding a meanshift (MS) optimization procedure into the particle filter (PF) (MSPF) to replace its inaccurate and expensive particle validation processes. The algorithm employs a combination of predetermined features, implicitly assuming that the background will not change. However, the assumption of fully specifying the background of the object may not often hold, especially in an uncontrolled environment. The first innovation of this research paper is the development of a dynamically adaptive multi-feature framework for MSPF (AMF-MSPF) in which features are ranked by a ranking module and the top features are selected on-the-fly. As a consequence, it improves local discrimination of the object from its immediate surroundings. It is also highly desirable to reduce the already complex framework of the MSPF to save resources to implement a feature ranking module. Thus, the second innovation of this research paper introduces a novel technique for the MS optimization method, which reduces its traditional complexity by an order of magnitude. The proposed AMF-MSPF framework is tested on different video datasets that exhibit challenging constraints. Experimental results have shown robustness, tracking accuracy and computational efficiency against these constraints. Comparison with existing methods has shown significant improvements in term of root mean square error (RMSE), false alarm rate (FAR), and F-SCORE.

2020 ◽  
pp. 207-217
Author(s):  
Jim Q. Chen

Current approaches in cyber defense are flawed as they are fortress-based and generally static in nature. They are not flexible in dealing with variations of attacks, especially zero-day attacks. To address this issue, researchers have looked into dynamic cyber defense. However, the available approaches are either only about high-level strategies or only about specific tactics. There is no integrated approach that brings both levels together in a systematic way. This research article intends to address this challenge by proposing a new dynamic cyber defense framework that is systematic and cohesive, and that integrates strategic, operational, and tactical levels. It improves the research in dynamic cyber defense by employing game-changing elements such as a contextual analysis system and an intelligent decision-making system.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1668
Author(s):  
Yuxiang Sun ◽  
Bo Yuan ◽  
Tao Zhang ◽  
Bojian Tang ◽  
Wanwen Zheng ◽  
...  

The reinforcement learning problem of complex action control in a multi-player wargame has been a hot research topic in recent years. In this paper, a game system based on turn-based confrontation is designed and implemented with state-of-the-art deep reinforcement learning models. Specifically, we first design a Q-learning algorithm to achieve intelligent decision-making, which is based on the DQN (Deep Q Network) to model complex game behaviors. Then, an a priori knowledge-based algorithm PK-DQN (Prior Knowledge-Deep Q Network) is introduced to improve the DQN algorithm, which accelerates the convergence speed and stability of the algorithm. The experiments demonstrate the correctness of the PK-DQN algorithm, it is validated, and its performance surpasses the conventional DQN algorithm. Furthermore, the PK-DQN algorithm shows effectiveness in defeating the high level of rule-based opponents, which provides promising results for the exploration of the field of smart chess and intelligent game deduction.


2017 ◽  
Vol 7 (4) ◽  
pp. 14-22
Author(s):  
Jim Q. Chen

Current approaches in cyber defense are flawed as they are fortress-based and generally static in nature. They are not flexible in dealing with variations of attacks, especially zero-day attacks. To address this issue, researchers have looked into dynamic cyber defense. However, the available approaches are either only about high-level strategies or only about specific tactics. There is no integrated approach that brings both levels together in a systematic way. This research article intends to address this challenge by proposing a new dynamic cyber defense framework that is systematic and cohesive, and that integrates strategic, operational, and tactical levels. It improves the research in dynamic cyber defense by employing game-changing elements such as a contextual analysis system and an intelligent decision-making system.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (2) ◽  
pp. 119-129 ◽  
Author(s):  
VILJAMI MAAKALA ◽  
PASI MIIKKULAINEN

Capacities of the largest new recovery boilers are steadily rising, and there is every reason to expect this trend to continue. However, the furnace designs for these large boilers have not been optimized and, in general, are based on semiheuristic rules and experience with smaller boilers. We present a multiobjective optimization code suitable for diverse optimization tasks and use it to dimension a high-capacity recovery boiler furnace. The objective was to find the furnace dimensions (width, depth, and height) that optimize eight performance criteria while satisfying additional inequality constraints. The optimization procedure was carried out in a fully automatic manner by means of the code, which is based on a genetic algorithm optimization method and a radial basis function network surrogate model. The code was coupled with a recovery boiler furnace computational fluid dynamics model that was used to obtain performance information on the individual furnace designs considered. The optimization code found numerous furnace geometries that deliver better performance than the base design, which was taken as a starting point. We propose one of these as a better design for the high-capacity recovery boiler. In particular, the proposed design reduces the number of liquor particles landing on the walls by 37%, the average carbon monoxide (CO) content at nose level by 81%, and the regions of high CO content at nose level by 78% from the values obtained with the base design. We show that optimizing the furnace design can significantly improve recovery boiler performance.


2020 ◽  
Author(s):  
Karthik Muthineni

The new industrial revolution Industry 4.0, connecting manufacturing process with digital technologies that can communicate, analyze, and use information for intelligent decision making includes Industrial Internet of Things (IIoT) to help manufactures and consumers for efficient controlling and monitoring. This work presents the design and implementation of an IIoT ecosystem for smart factories. The design is based on Siemens Simatic IoT2040, an intelligent industrial gateway that is connected to modbus sensors publishing data onto Network Platform for Internet of Everything (NETPIE). The design demonstrates the capabilities of Simatic IoT2040 by taking Python, Node-Red, and Mosca into account that works simultaneously on the device.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 266 ◽  
Author(s):  
Yifeng Wang ◽  
Zhijiang Zhang ◽  
Ning Zhang ◽  
Dan Zeng

The one-shot multiple object tracking (MOT) framework has drawn more and more attention in the MOT research community due to its advantage in inference speed. However, the tracking accuracy of current one-shot approaches could lead to an inferior performance compared with their two-stage counterparts. The reasons are two-fold: one is that motion information is often neglected due to the single-image input. The other is that detection and re-identification (ReID) are two different tasks with different focuses. Joining detection and re-identification at the training stage could lead to a suboptimal performance. To alleviate the above limitations, we propose a one-shot network named Motion and Correlation-Multiple Object Tracking (MAC-MOT). MAC-MOT introduces a motion enhance attention module (MEA) and a dual correlation attention module (DCA). MEA performs differences on adjacent feature maps which enhances the motion-related features while suppressing irrelevant information. The DCA module focuses on decoupling the detection task and re-identification task to strike a balance and reduce the competition between these two tasks. Moreover, symmetry is a core design idea in our proposed framework which is reflected in Siamese-based deep learning backbone networks, the input of dual stream images, as well as a dual correlation attention module. Our proposed approach is evaluated on the popular multiple object tracking benchmarks MOT16 and MOT17. We demonstrate that the proposed MAC-MOT can achieve a better performance than the baseline state of the arts (SOTAs).


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2894
Author(s):  
Minh-Quan Dao ◽  
Vincent Frémont

Multi-Object Tracking (MOT) is an integral part of any autonomous driving pipelines because it produces trajectories of other moving objects in the scene and predicts their future motion. Thanks to the recent advances in 3D object detection enabled by deep learning, track-by-detection has become the dominant paradigm in 3D MOT. In this paradigm, a MOT system is essentially made of an object detector and a data association algorithm which establishes track-to-detection correspondence. While 3D object detection has been actively researched, association algorithms for 3D MOT has settled at bipartite matching formulated as a Linear Assignment Problem (LAP) and solved by the Hungarian algorithm. In this paper, we adapt a two-stage data association method which was successfully applied to image-based tracking to the 3D setting, thus providing an alternative for data association for 3D MOT. Our method outperforms the baseline using one-stage bipartite matching for data association by achieving 0.587 Average Multi-Object Tracking Accuracy (AMOTA) in NuScenes validation set and 0.365 AMOTA (at level 2) in Waymo test set.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1067
Author(s):  
Tongtong Yuan ◽  
Wenzhu Yang ◽  
Qian Li ◽  
Yuxia Wang

Siamese trackers are widely used in various fields for their advantages of balancing speed and accuracy. Compared with the anchor-based method, the anchor-free-based approach can reach faster speeds without any drop in precision. Inspired by the Siamese network and anchor-free idea, an anchor-free Siamese network (AFSN) with multi-template updates for object tracking is proposed. To improve tracking performance, a dual-fusion method is adopted in which the multi-layer features and multiple prediction results are combined respectively. The low-level feature maps are concatenated with the high-level feature maps to make full use of both spatial and semantic information. To make the results as stable as possible, the final results are obtained by combining multiple prediction results. Aiming at the template update, a high-confidence multi-template update mechanism is used. The average peak to correlation energy is used to determine whether the template should be updated. We use the anchor-free network to implement object tracking in a per-pixel manner, which computes the object category and bounding boxes directly. Experimental results indicate that the average overlap and success rate of the proposed algorithm increase by about 5% and 10%, respectively, compared to the SiamRPN++ algorithm when running on the dataset of GOT-10k (Generic Object Tracking Benchmark).


Author(s):  
Akihiro Takezawa ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

This paper discuses a new topology optimization method using frame elements for the design of mechanical structures at the conceptual design phase. The optimal configurations are determined by maximizing multiple eigen-frequencies in order to obtain the most stable structures for dynamic problems. The optimization problem is formulated using frame elements having ellipsoidal cross-sections, as the simplest case. Construction of the optimization procedure is based on CONLIN and the complementary strain energy concept. Finally, several examples are presented to confirm that the proposed method is useful for the topology optimization method discussed here.


Sign in / Sign up

Export Citation Format

Share Document