Effect of the Nature and Relative Concentration of Substrate, Water Mineralization, and Storage Temperature on the Oxidants Produced by Lactoperoxidase and on Their Antifungal Activity against Penicillium expansum and Botrytis cinerea
Lactoperoxidase is an enzyme that generates oxidants with antimicrobial activity in presence of a (pseudo)halogen and hydrogen peroxide, but various factors can drastically reduce the antimicrobial activity of the lactoperoxidase system. Spectroscopic, ionic chromatography, and 13C-NMR methods showed that the oxidants generated by lactoperoxidase are OSCN− in the presence of SCN− and I2 in the presence of I−. Neither of them, however, inhibited Penicillium expansum, one of the causal agents of fruit mold. When a mixture of SCN− and I− was used, no OSCN−, OCN−, I2, or interhalogen I2SCN− was produced. However, its long-term stability, NH2-oxidizing capacity, and antifungal activity against P. expansum argue in favor of an I−-derived oxidant. Strongly mineralized water optimized enzyme-catalyzed reactions with higher oxidant production. Storage at 4 °C resulted in long-term stability and extended antifungal activity against P. expansum. The relative iodide/thiocyanate concentrations turned out to be important, as better in vitro inhibition of Botrytis cinerea, the causal agent of apples’s grey mold, was obtained with a high KI + KSCN concentration, a KI/KSCN ratio of 4.5, and a (KI + KSCN)/H2O2 ratio of 1. The nature of the substrates, their relative concentrations, the medium, and the storage temperature modifed the antifungal activity of lactoperoxidase.