scholarly journals Cellular Spheroids of Mesenchymal Stem Cells and Their Perspectives in Future Healthcare

2019 ◽  
Vol 9 (4) ◽  
pp. 627 ◽  
Author(s):  
Hao-Wei Han ◽  
Shigetaka Asano ◽  
Shan-hui Hsu

Intrinsic cellular properties of several types of cells are dramatically altered as the culture condition shifts from two-dimensional (2D) to three-dimensional (3D) environment. Currently, several lines of evidence have demonstrated the therapeutic potential of mesenchymal stem cells (MSCs) in regenerative medicine. MSCs not only replenish the lost cells, they also promote the regeneration of impaired tissues by modulating the immune responses. Following the development of 3D cell culture, the enhanced therapeutic efficacy of spheroid-forming MSCs have been identified in several animal disease models by promoting differentiation or trophic factor secretion, as compared to planar-cultured MSCs. Due to the complicated and multifunctional applications in the medical field, MSCs are recently named as medicinal signaling cells. In this review, we summarize the predominant differences of cell–environment interactions for the MSC spheroids formed by chitosan-based substrates and other scaffold-free approaches. Furthermore, several important physical and chemical factors affecting cell behaviors in the cell spheroids are discussed. Currently, the understanding of MSCs spheroid interactions is continuously expanding. Overall, this article aims to review the broad advantages and perspectives of MSC spheroids in regenerative medicine and in future healthcare.

2021 ◽  
pp. 039139882098680
Author(s):  
Xuefeng Zhang ◽  
Nan Wang ◽  
Yuhua Huang ◽  
Yan Li ◽  
Gang Li ◽  
...  

Background: Three-dimensional (3D) culture has been reported to increase the therapeutic potential of mesenchymal stem cells (MSCs). The present study assessed the therapeutic efficacy of extracellular vesicles (EVs) from 3D cultures of human placental MSCs (hPMSCs) for acute kidney injury (AKI). Methods: The supernatants from monolayer culture (2D) and 3D culture of hPMSCs were ultra-centrifuged for EVs isolation. C57BL/6 male mice were submitted to 45 min bilateral ischemia of kidney, followed by renal intra-capsular administration of EVs within a 72 h reperfusion period. Histological, immunohistochemical, and ELISA analyses of kidney samples were performed to evaluate cell death and inflammation. Kidney function was evaluated by measuring serum creatinine and urea nitrogen. The miRNA expression profiles of EVs from 2D and 3D culture of hPMSCs were evaluated using miRNA microarray analysis. Results: The 3D culture of hPMSCs formed spheroids with different diameters depending on the cell density seeded. The hPMSCs produced significantly more EVs in 3D culture than in 2D culture. More importantly, injection of EVs from 3D culture of hPMSCs into mouse kidney with ischemia-reperfusion (I/R)-AKI was more beneficial in protecting from progression of I/R than those from 2D culture. The EVs from 3D culture of hPMSCs were more efficient against apoptosis and inflammation than those from 2D culture, which resulted in a reduction in tissue damage and amelioration of renal function. MicroRNA profiling analysis revealed that a set of microRNAs were significantly changed in EVs from 3D culture of hPMSCs, especially miR-93-5p. Conclusion: The EVs from 3D culture of hPMSCs have therapeutic potential for I/R-AKI.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lijun Chen ◽  
Jingjing Qu ◽  
Quanhui Mei ◽  
Xin Chen ◽  
Yangxin Fang ◽  
...  

AbstractMenstrual blood-derived mesenchymal stem cells (MenSCs) have great potential in regenerative medicine. MenSC has received increasing attention owing to its impressive therapeutic effects in both preclinical and clinical trials. However, the study of MenSC-derived small extracellular vesicles (EVs) is still in its initial stages, in contrast to some common MSC sources (e.g., bone marrow, umbilical cord, and adipose tissue). We describe the basic characteristics and biological functions of MenSC-derived small EVs. We also demonstrate the therapeutic potential of small EVs in fulminant hepatic failure, myocardial infarction, pulmonary fibrosis, prostate cancer, cutaneous wound, type-1 diabetes mellitus, aged fertility, and potential diseases. Subsequently, novel hotspots with respect to MenSC EV-based therapy are proposed to overcome current challenges. While complexities regarding the therapeutic potential of MenSC EVs continue to be unraveled, advances are rapidly emerging in both basic science and clinical medicine. MenSC EV-based treatment has great potential for treating a series of diseases as a novel therapeutic strategy in regenerative medicine.


Author(s):  
Ahmed Elhussieny ◽  
Ken’ichiro Nogami ◽  
Fusako Sakai-Takemura ◽  
Yusuke Maruyama ◽  
AbdElraouf Omar Abdelbakey ◽  
...  

Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from both foetal and adult tissues. Several groups demonstrated that transplantation of MSCs promoted the regeneration of skeletal muscle and ameliorated muscular dystrophy in animal models. Mesenchymal stem cells in skeletal muscle, also known as fibro-adipogenic progenitors (FAPs), are essential for the maintenance of skeletal muscle. Importantly, they contribute to fibrosis and fat accumulation in dystrophic muscle. Therefore, MSCs in muscle are a pharmacological target for the treatment of muscular dystrophies. In this chapter, we briefly update the knowledge on mesenchymal stem/progenitor cells and discuss their therapeutic potential as a regenerative medicine treatment of Duchenne muscular dystrophy.


MRS Advances ◽  
2017 ◽  
Vol 2 (47) ◽  
pp. 2561-2570
Author(s):  
Xun Xu ◽  
Weiwei Wang ◽  
Zhengdong Li ◽  
Karl Kratz ◽  
Nan Ma ◽  
...  

ABSTRACTThe therapeutic effect of mesenchymal stem cells (MSCs) has been investigated in various clinical applications, in which their functional benefits are mainly attributed to the secretion of soluble factors. The enhancement of their therapeutic potential by physical and chemical properties of cell culture substrate is a safe and effective strategy, since they are highly sensitive to their microenvironment such as the elasticity and surface topography. In this study, we demonstrated that the geometry of polymeric substrate regulated the interleukin-6 (IL-6) secretion of human adipose derived MSCs. Polystyrene substrates comprising arrays of square-shaped (S50) or round-shaped (R50) microwells (side length or diameter of 50 μm and depth of 10 μm) were prepared by injection molding. Cellular apoptototic rate of MSCs was not affected by the microwell geometry, while the upregulated secretion of IL-6 and the enhancement of nuclear transcription factor STAT3 were detected in MSCs seeded on S50 substrate. The geometry-dependent modulatory effect was highly associated with ROCK signaling cascade. The inhibition of ROCK abolished the disparity in IL-6 secretion. These findings highlight the possibility to steer the secretion profile of stem cells via microwell geometry in combination with the manipulation of ROCK signaling pathway.


2021 ◽  
Author(s):  
Bianka Porubska ◽  
Daniel Vasek ◽  
Veronika Somova ◽  
Michaela Hajkova ◽  
Michaela Hlaviznova ◽  
...  

Abstract It is becoming increasingly evident that selecting an optimal source of mesenchymal stem cells (MSCs) is crucial for the successful outcome of MSC-based therapies. During the search for cells with potent regenerative properties, Sertoli cells (SCs) have been proven to modulate immune response in both in vitro and in vivo models. Based on morphological properties and expression of surface markers, it has been suggested that SCs could be a kind of MSCs, however, this hypothesis has not been fully confirmed. Therefore, we compared several parameters of MSCs and SCs, with the aim to evaluate the therapeutic potential of SCs in regenerative medicine. We showed that SCs successfully underwent osteogenic, chondrogenic and adipogenic differentiation and determined the expression profile of canonical MSC markers on the SC surface. Besides, SCs rescued T helper (Th) cells from undergoing apoptosis, promoted the anti-inflammatory phenotype of these cells, but did not regulate Th cell proliferation. MSCs impaired the Th17-mediated response; on the other hand, SCs suppressed the inflammatory polarisation in general. SCs induced M2 macrophage polarisation more effectively than MSCs. For the first time, we demonstrated here the ability of SCs to transfer mitochondria to immune cells. Our results indicate that SCs are a type of MSCs and modulate the reactivity of the immune system. Therefore, we suggest that SCs are promising candidates for application in regenerative medicine due to their anti-inflammatory and protective effects, especially in the therapies for diseases associated with testicular tissue inflammation.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Devang M. Patel ◽  
Jainy Shah ◽  
Anand S. Srivastava

Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation into both mesenchymal and nonmesenchymal lineages. The intrinsic properties of these cells make them an attractive candidate for clinical applications. MSCs are of keen interest because they can be isolated from a small aspirate of bone marrow or adipose tissues and can be easily expandedin vitro. Moreover, their ability to modulate immune responses makes them an even more attractive candidate for regenerative medicine as allogeneic transplant of these cells is feasible without a substantial risk of immune rejection. MSCs secrete various immunomodulatory molecules which provide a regenerative microenvironment for a variety of injured tissues or organ to limit the damage and to increase self-regulated tissue regeneration. Autologous/allogeneic MSCs delivered via the bloodstream augment the titers of MSCs that are drawn to sites of tissue injury and can accelerate the tissue repair process. MSCs are currently being tested for their potential use in cell and gene therapy for a number of human debilitating diseases and genetic disorders. This paper summarizes the current clinical and nonclinical data for the use of MSCs in tissue repair and potential therapeutic role in various diseases.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Mark Jakob ◽  
Mario Hambrecht ◽  
Jennifer L. Spiegel ◽  
Julia Kitz ◽  
Martin Canis ◽  
...  

A multimodal therapeutic approach involving radiotherapy is required when treating head and neck squamous cell carcinoma. However, radiotherapy is restricted due to its high risk for damages to the surrounding healthy tissue of the treated area. Tissue regeneration and wound healing is promoted by the survival and regenerative capacities of tissue-resident or invading stem cells. Mesenchymal stem cells (MSCs) exhibit a promising therapeutic potential in the field of cell-based tissue engineering and regenerative medicine due to their immunomodulatory properties and differentiation capacity. However, the generation of MSCs for therapeutic applications is still a major challenge. We aimed to produce highly homogeneous induced pluripotent stem cell-derived mesenchymal stem cells (iP-MSCs) in an autologous manner from initially isolated human mucosa mesenchymal stem cells (mMSCs) of the upper respiratory tract. Therefore, mMSCs were reprogrammed into induced pluripotent stem cells (iPSCs) by non-integrative chromosomal technologies and differentiated into corresponding iP-MSCs. We demonstrated that mMSCs and iP-MSCs show similar cell characteristics in terms of morphology, clonogenic potential, differentiation, and surface phenotype. Moreover, iP-MSCs demonstrated related immunosuppressive capacity as mMSCs including the secretion of cytokines, and T cell inhibition. Therefore, generating iP-MSCs in an autologous manner may be a novel personalized treatment option in regenerative medicine.


2019 ◽  
Vol 20 (5) ◽  
pp. 1132 ◽  
Author(s):  
Yoichi Yamada ◽  
Sayaka Nakamura-Yamada ◽  
Kaoru Kusano ◽  
Shunsuke Baba

Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) that have multipotent differentiation and a self-renewal ability. They have been useful not only for dental diseases, but also for systemic diseases. Extensive studies have suggested that DPSCs are effective for various diseases, such as spinal cord injuries, Parkinson’s disease, Alzheimer’s disease, cerebral ischemia, myocardial infarction, muscular dystrophy, diabetes, liver diseases, eye diseases, immune diseases, and oral diseases. DPSCs have the potential for use in a cell-therapeutic paradigm shift to treat these diseases. It has also been reported that DPSCs have higher regenerative potential than the bone marrow-derived mesenchymal stem cells known as representative MSCs. Therefore, DPSCs have recently gathered much attention. In this review, the therapeutic potential of DPSCs, the latest progress in the pre-clinical study for treatment of these various systemic diseases, and the clinical applications of DPSCs in regenerative medicine, are all summarized. Although challenges, including mechanisms of the effects and establishment of cell processing and transplantation methods for clinical use, still remain, DPSCs could be promising stem cells sources for various clinical applications, because of their easy isolation by a noninvasive procedure without ethical concerns.


Sign in / Sign up

Export Citation Format

Share Document