scholarly journals High-Gain Waveguide-Fed Circularly Polarized Spidron Fractal Aperture Antenna

2019 ◽  
Vol 9 (4) ◽  
pp. 691 ◽  
Author(s):  
Son Trinh-Van ◽  
Thuy Thi ◽  
Youngoo Yang ◽  
Kang-Yoon Lee ◽  
Kyung-Young Jung ◽  
...  

A high-gain rectangular waveguide-fed aperture antenna that uses a Spidron fractal structure to produce circular polarization is proposed. The antenna consists of a Spidron fractal aperture etched onto the ground plane of a dielectric substrate that is directly excited by a WR (Waveguide Rectangular)-90 waveguide-to-coax adapter. A superstrate was implemented at an appropriate distance above the antenna to enhance the broadside gain significantly. An antenna prototype was fabricated and tested to validate the design. The measured impedance bandwidth for | S 11 | ≤ −10 dB is 9.89–11.58 GHz (15.74%). The corresponding measured 3 dB axial ratio (AR) bandwidth is 10.68–11.00 GHz (2.95%), and within the measured 3 dB AR bandwidth, a maximum realized gain of 9.59 dBic is achieved. The radiation patterns of the proposed antenna are presented and discussed.

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Rongling Jian ◽  
Yueyun Chen ◽  
Taohua Chen

In this paper, a novel wideband circularly polarized (CP) millimeter wave (mmWave) microstrip antenna is presented. The proposed antenna consists of a central patch and a microstrip line radiator. The CP radiation is achieved by loading a rectangular slot on the ground plane. To improve the 3-dB axial ratio bandwidth (ARBW), two symmetric parasitic rectangular patches paralleled to a central patch and a slit positioned to the right of the central patch are loaded. To verify this design, the proposed antenna is fabricated with a small antenna of 2.88 × 3.32 × 0.508 mm3. The measured impedance bandwidth (IMBW) for S11<−10 dB of the proposed antenna is 35.97% (22.8 to 33.8 GHz). Meanwhile, the simulation result shows that the 3-dB ARBW is 15.19% (28.77 to 33.5 GHz) within impedance bandwidth, and the peak gain is from 5.08 to 5.22 dBic within 3-dB ARBW. The proposed antenna is suitable for CP applications in the Ka-band.


2016 ◽  
Vol 9 (3) ◽  
pp. 697-703 ◽  
Author(s):  
Nagendra Kushwaha ◽  
Raj Kumar

This paper presents a high gain, wideband circularly polarized (CP) antenna. High gain of the antenna is achieved by employing a frequency selective surface (FSS) as a reflector. The antenna is a coplanar waveguide-fed structure with a modified L-shaped radiating patch. The unit element of the FSS is formed by connecting two modified dipoles at an angle of 90°. The antenna with reflector has a measured impedance bandwidth of 74.3% (2.2–4.8 GHz) and a 3-dB axial ratio bandwidth (ARBW) of 62% (2.2–4.18 GHz). The maximum boresight gain of the proposed antenna with reflector is 7.1 dB at 3.4 GHz. The radiation patterns of the antenna with the FSS are also measured and compared with simulated patterns. The various aspects of effect of FSS on CP antenna performance are also discussed.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 651-655 ◽  
Author(s):  
Yilin Liu ◽  
Kama Huang

Abstract A novel design of a coplanar waveguide (CPW) feed antenna array with circular polarization (CP) and a high front-to-back ratio is described. The proposed CP array is achieved by using a compact CPW–slotline transition network etched in the ground plane. The measured results show that this kind of feeding method can improve the impedance bandwidth, as well as the axial ratio bandwidth of the CP antenna array and provide adequate gain. The proposed array can achieve a 6.08% impedance bandwidth and a 4.10% CP bandwidth. Details of the antenna design and experimental results are presented and discussed.


Author(s):  
Sonal Gupta ◽  
Shilpee Patil ◽  
Chhaya Dalela ◽  
Binod Kumar Kanaujia

Abstract Design of single-feed circularly polarized (CP) microstrip antenna is proposed in this article. The design employs the concept of E-shape patch with inclined fractal defected ground structure (IFDGS), which can improve the impedance bandwidth, gain, and axial ratio (AR) bandwidth. The excellent enhanced impedance bandwidth, axial ratio bandwidth, and gain are achieved by an inclined E-shaped fractal etched on the ground plane. The parameter studies of the E-shaped IFDGS are given to illustrate the way to obtain CP radiation. The third iterative IFDGS is fabricated on easily available FR4 substrate with a size of 0.494 λ0 × 0.494 λ0 × 0.019 λ0 (λ0 is the wavelength in free space at 3.624 GHz). The measured results verify the simulated results and show good agreement. The proposed antenna shows an impedance bandwidth of 12.7% at a centre frequency of 3.47 GHz and 3-dB AR bandwidth for this band is 2.39% at a centre frequency of 3.626 GHz. The measured peak gain for the proposed antenna is found as 8.1 dBi. The proposed antenna can be suitable for mobile WIMAX operation (IEEE 802.16e-2005 standard), wireless communication in CA-band and FCC.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Deqiang Yang ◽  
Meng Zou ◽  
Jin Pan

A single-point-fed circularly polarized (CP) rectangular dielectric resonator antenna (DRA) with wide CP bandwidth is presented. By usingTE111andTE113modes of the rectangular DRA, a wideband CP performance is achieved. The coupling slot of the antenna contains a resistor loaded monofilar-spiral-slot and four linear slots. Design concept of the proposed antenna is demonstrated by simulations, and parameter studies are carried out. Prototype of the proposed antenna was fabricated and measured. Good agreement between the simulation and measurement is obtained. The measured impedance bandwidth (|S11|<-10 dB) and 3 dB axial-ratio (AR) bandwidth are 51.4% (1.91–3.23 GHz) and 33.0% (2.15–3.00 GHz), respectively.


2018 ◽  
Vol 11 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Gunjan Srivastava

A compact circularly polarized antenna with wide axial ratio bandwidth (ARBW) using quasi-self-complementary (QSC) structure is presented. A 3-dB ARBW is achieved by shortening the ground plane of the QSC structure. Furthermore, the wide ARBW is obtained by the introduction of a stepped stub in the extended ground plane of the QSC structure. The antenna is fabricated on a FR4 substrate with the overall dimensions of 25 mm × 22 mm × 0.8 mm. The proposed antenna has an impedance bandwidth of 5.9 GHz (2.4–8.3 GHz, 110%) and 3 dB ARBW of 1.6 GHz (2.4–4 GHz, 50%). A peak gain of 1–3 dBi is observed within the 3 dB ARBW.


Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


2016 ◽  
Vol 9 (3) ◽  
pp. 649-656 ◽  
Author(s):  
Neng-Wu Liu ◽  
Lei Zhu ◽  
Wai-Wa Choi

A low-profile circularly polarized (CP) slot antenna to achieve a wide axial-ratio (AR) beamwidth is proposed in this paper. The radiating patch consists of two orthogonal pairs of parallel slots etched symmetrically onto a ground plane. Firstly, our theoretical study demonstrates that the CP radiation can be satisfactorily achieved at the broadside, when the vertical and horizontal paired-slots are excited in the same amplitude with 90° phase difference. Secondly, the principle of CP radiation of the proposed antenna on an infinite ground plane is described. Through analyzing the spacing between two parallel slots, the |Eθ| and |Eφ| radiation patterns can be made approximately identical with each other over a large angle range. As such, the slot antenna achieves a wide AR beamwidth. After that, the 3 dB AR beamwidth with respect to the size of a finite ground plane is investigated to constitute a practical CP antenna on a finite ground plane. In final, the proposed CP antenna with a 1–4 probe-to-microstrip feeding network is designed and fabricated on a finite ground plane of a dielectric substrate. Measured results are shown to be in good agreement with the simulated ones about the gain, reflection coefficient, AR bandwidth, and radiation patterns. Most importantly, a wide 3 dB AR beamwidth of 126° and low-profile property with the height of 0.036λ0 are achieved.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wei He ◽  
Yejun He ◽  
Long Zhang ◽  
Sai-Wai Wong ◽  
Wenting Li ◽  
...  

In this paper, a low-profile circularly polarized (CP) conical-beam antenna with a wide overlap bandwidth is presented. Such an antenna is constructed on the two sides of a square substrate. The antenna consists of a wideband monopolar patch antenna fed by a probe in the center and two sets of arc-hook-shaped branches. The monopolar patch antenna is loaded by a set of conductive shorting vias to achieve a wideband vertically polarized electric field. Two sets of arc-hook-shaped parasitic branches connected to the patch and ground plane can generate a horizontally polarized electric field. To further increase the bandwidth of the horizontally polarized electric field, two types of arc-hook-shaped branches with different sizes are used, which can generate another resonant frequency. When the parameters of the arc-hook-shaped branches are reasonably adjusted, a 90° phase difference can be generated between the vertically polarized electric field and the horizontally polarized electric field, so that the antenna can produce a wideband CP radiation pattern with a conical beam. The proposed antenna has a wide impedance bandwidth ( ∣ S 11 ∣ < − 10   dB ) of 35.6% (4.97-7.14 GHz) and a 3 dB axial ratio (AR) bandwidth at phi = 0 ° and theta = 35 ° of about 30.1% (4.97-6.73 GHz). Compared with the earlier reported conical-beam CP antennas, an important feature of the proposed antenna is that the AR bandwidth is completely included in the impedance bandwidth, that is, the overlap bandwidth of ∣ S 11 ∣ < − 10   dB and AR < 3   dB is 30.1%. Moreover, the stable omnidirectional conical-beam radiation patterns can be maintained within the whole operational bandwidth.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Dalia M. Elsheakh ◽  
Magdy F. Iskander

This paper describes the design and development of a triband with circularly polarized quasi-Yagi antenna for ka-band and short range wireless communications applications. The proposed antenna consists of an integrated balun-fed printed dipole, parasitic folded dipole and a short strip, and a modified ground plane. The antenna structure, together with the parasitic elements, is designed to achieve circular polarization and triband operating at resonant frequencies of 13.5 GHz, 30 GHz, and 60 GHz. Antenna design was first simulated using HFSS ver.14, and the obtained results were compared with experimental measurements on a prototype developed on a single printed circuit board. Achieved characteristics include −10 dB impedance bandwidth at the desired bands, circular polarization axial ratioAR<3 dB, front to back ratio of 6 dB, gain value of about 4 dBi, and average radiation efficiency of 60%. The paper includes comparison between simulation and experimental results.


Sign in / Sign up

Export Citation Format

Share Document