scholarly journals The Adoption of Three-Dimensional Additive Manufacturing from Biomedical Material Design to 3D Organ Printing

2019 ◽  
Vol 9 (4) ◽  
pp. 811 ◽  
Author(s):  
Ajay Vikram Singh ◽  
Mohammad Hasan Dad Ansari ◽  
Shuo Wang ◽  
Peter Laux ◽  
Andreas Luch ◽  
...  

Three-dimensional (3D) bioprinting promises to change future lifestyle and the way we think about aging, the field of medicine, and the way clinicians treat ailing patients. In this brief review, we attempt to give a glimpse into how recent developments in 3D bioprinting are going to impact vast research ranging from complex and functional organ transplant to future toxicology studies and printed organ-like 3D spheroids. The techniques were successfully applied to reconstructed complex 3D functional tissue for implantation, application-based high-throughput (HTP) platforms for absorption, distribution, metabolism, and excretion (ADME) profiling to understand the cellular basis of toxicity. We also provide an overview of merits/demerits of various bioprinting techniques and the physicochemical basis of bioink for tissue engineering. We briefly discuss the importance of universal bioink technology, and of time as the fourth dimension. Some examples of bioprinted tissue are shown, followed by a brief discussion on future biomedical applications.

Author(s):  
Y. Aishwarya ◽  
B. Gourangi ◽  
K. Abhijeet

Chronic shortage of human organs for transplantation has become more problematic in spite of major development in transplant technologies. In 2009, only 27,996 (18%) of 154,324 patients received organs and 8,863 (25 per day) died while on the waiting list. As of early 2014, approximately 120,000 people in the U.S. were awaiting an organ transplant. The solution to this problem is 3D bio-printing. This technology may provide a unique and new opportunity where we can print 3D organs. It incorporates two technologies, tissue engineering and 3D printing. 3D bioprinting involves dispensing cells onto a biocompatible scaffold using a successive layer-by-layer approach to generate tissue-like three-dimensional structures. It uses instruction in the CAD file for formation of the object, high level computer programming and ability to build highly advanced computer systems, it offers hope for bridging the gap between organ shortage and transplantation needs.


2019 ◽  
Vol 9 (13) ◽  
pp. 2596 ◽  
Author(s):  
Chia Tai ◽  
Soukaina Bouissil ◽  
Enkhtuul Gantumur ◽  
Mary Stephanie Carranza ◽  
Ayano Yoshii ◽  
...  

Three-dimensional (3D) bioprinting technology is now one of the best ways to generate new biomaterial for potential biomedical applications. Significant progress in this field since two decades ago has pointed the way toward use of natural biopolymers such as polysaccharides. Generally, these biopolymers such as alginate possess specific reactive groups such as carboxylate able to be chemically or enzymatically functionalized to generate very interesting hydrogel structures with biomedical applications in cell generation. This present review gives an overview of the main natural anionic polysaccharides and focuses on the description of the 3D bioprinting concept with the recent development of bioprinting processes using alginate as polysaccharide.


Author(s):  
Dhakshinamoorthy Sundaramurthi ◽  
Sakandar Rauf ◽  
Charlotte Hauser

Alternative strategies that overcome existing organ transplantation methods are of increasing importance be-cause of ongoing demands and lack of adequate organ donors. Recent improvements in tissue engineering techniques offer improved solutions to this problem and will influence engineering and medicinal applications. Tissue engineering employs the synergy of cells, growth factors and scaffolds besides others with the aim to mimic the native extracellular matrix for tissue regeneration. Three-dimensional (3D) bioprinting has been explored to create organs for transplanta-tion, medical implants, prosthetics, in vitro models and 3D tissue models for drug testing. In addition, it is emerging as a powerful technology to provide patients with severe disease conditions with personalized treatments. Challenges in tis-sue engineering include the development of 3D scaffolds that closely resemble native tissues. In this review, existing printing methods such as extrusion-based, robotic dispensing, cellular inkjet, laser-assisted printing and integrated tissue organ printing (ITOP) are examined. Also, natural and synthetic polymers and their blends as well as peptides that are exploited as bioinks are discussed with emphasis on regenerative medicine applications. Furthermore, applications of 3D bioprinting in regenerative medicine, evolving strategies and future perspectives are summarized.


2019 ◽  
Vol 24 (42) ◽  
pp. 4991-5008 ◽  
Author(s):  
Mohammed S. Algahtani ◽  
Abdul Aleem Mohammed ◽  
Javed Ahmad

Three-dimensional printing (3DP) has a significant impact on organ transplant, cosmetic surgery, surgical planning, prosthetics and other medical fields. Recently, 3 DP attracted the attention as a promising method for the production of small-scale drug production. The knowledge expansion about the population differences in metabolism and genetics grows the need for personalised medicine substantially. In personalised medicine, the patient receives a tailored dose and the release profile is based on his pharmacokinetics data. 3 DP is expected to be one of the leading solutions for the personalisation of the drug dispensing. This technology can fabricate a drug-device with complicated geometries and fillings to obtain the needed drug release profile. The extrusionbased 3 DP is the most explored method for investigating the feasibility of the technology to produce a novel dosage form with properties that are difficult to achieve using the conventional industrial methods. Extrusionbased 3 DP is divided into two techniques, the semi-solid extrusion (SSE) and the fused deposition modeling (FDM). This review aims to explain the extrusion principles behind the two techniques and discuss their capabilities to fabricate novel dosage forms. The advantages and limitations observed through the application of SSE and FDM for fabrication of drug dosage forms were discussed in this review. Further exploration and development are required to implement this technology in the healthcare frontline for more effective and personalised treatment.


2019 ◽  
Vol 16 (4) ◽  
pp. 267-276
Author(s):  
Qurat ul Ain Farooq ◽  
Noor ul Haq ◽  
Abdul Aziz ◽  
Sara Aimen ◽  
Muhammad Inam ul Haq

Background: Mass spectrometry is a tool used in analytical chemistry to identify components in a chemical compound and it is of tremendous importance in the field of biology for high throughput analysis of biomolecules, among which protein is of great interest. Objective: Advancement in proteomics based on mass spectrometry has led the way to quantify multiple protein complexes, and proteins interactions with DNA/RNA or other chemical compounds which is a breakthrough in the field of bioinformatics. Methods: Many new technologies have been introduced in electrospray ionization (ESI) and Matrixassisted Laser Desorption/Ionization (MALDI) techniques which have enhanced sensitivity, resolution and many other key features for the characterization of proteins. Results: The advent of ambient mass spectrometry and its different versions like Desorption Electrospray Ionization (DESI), DART and ELDI has brought a huge revolution in proteomics research. Different imaging techniques are also introduced in MS to map proteins and other significant biomolecules. These drastic developments have paved the way to analyze large proteins of >200kDa easily. Conclusion: Here, we discuss the recent advancement in mass spectrometry, which is of great importance and it could lead us to further deep analysis of the molecules from different perspectives and further advancement in these techniques will enable us to find better ways for prediction of molecules and their behavioral properties.


Author(s):  
Lisa Rodgers

‘Ordinary’ employment contracts—including those of domestic servants—have been deemed to attract diplomatic immunity because they fall within the scope of diplomatic functions. This chapter highlights the potential for conflict between these forms of immunity and the rights of the employees, and reflects on cases in which personal servants of diplomatic agents have challenged both the existence of immunity and the scope of its application. The chapter examines claims that the exercise of diplomatic immunity might violate the right to a fair trial under Article 6 of the European Convention on Human Rights and the way in which courts have dealt with these issues. The chapter analyses diplomats’ own employment claims and notes that they are usually blocked by the assertion of immunity, but also reflects on more recent developments in which claims had been considered which were incidental to diplomatic employment (eg Nigeria v Ogbonna [2012]).


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1629
Author(s):  
Colin H. Quinn ◽  
Andee M. Beierle ◽  
Elizabeth A. Beierle

In the quest to advance neuroblastoma therapeutics, there is a need to have a deeper understanding of the tumor microenvironment (TME). From extracellular matrix proteins to tumor associated macrophages, the TME is a robust and diverse network functioning in symbiosis with the solid tumor. Herein, we review the major components of the TME including the extracellular matrix, cytokines, immune cells, and vasculature that support a more aggressive neuroblastoma phenotype and encumber current therapeutic interventions. Contemporary treatments for neuroblastoma are the result of traditional two-dimensional culture studies and in vivo models that have been translated to clinical trials. These pre-clinical studies are costly, time consuming, and neglect the study of cofounding factors such as the contributions of the TME. Three-dimensional (3D) bioprinting has become a novel approach to studying adult cancers and is just now incorporating portions of the TME and advancing to study pediatric solid. We review the methods of 3D bioprinting, how researchers have included TME pieces into the prints, and highlight present studies using neuroblastoma. Ultimately, incorporating the elements of the TME that affect neuroblastoma responses to therapy will improve the development of innovative and novel treatments. The use of 3D bioprinting to achieve this aim will prove useful in developing optimal therapies for children with neuroblastoma.


2019 ◽  
Vol 34 (23) ◽  
pp. 1930011 ◽  
Author(s):  
Cyril Closset ◽  
Heeyeon Kim

We give a pedagogical introduction to the study of supersymmetric partition functions of 3D [Formula: see text] supersymmetric Chern–Simons-matter theories (with an [Formula: see text]-symmetry) on half-BPS closed three-manifolds — including [Formula: see text], [Formula: see text], and any Seifert three-manifold. Three-dimensional gauge theories can flow to nontrivial fixed points in the infrared. In the presence of 3D [Formula: see text] supersymmetry, many exact results are known about the strongly-coupled infrared, due in good part to powerful localization techniques. We review some of these techniques and emphasize some more recent developments, which provide a simple and comprehensive formalism for the exact computation of half-BPS observables on closed three-manifolds (partition functions and correlation functions of line operators). Along the way, we also review simple examples of 3D infrared dualities. The computation of supersymmetric partition functions provides exceedingly precise tests of these dualities.


Sign in / Sign up

Export Citation Format

Share Document