3D-BIOPRINTING (Application of 3D printer for Organ Fabrication)

Author(s):  
Y. Aishwarya ◽  
B. Gourangi ◽  
K. Abhijeet

Chronic shortage of human organs for transplantation has become more problematic in spite of major development in transplant technologies. In 2009, only 27,996 (18%) of 154,324 patients received organs and 8,863 (25 per day) died while on the waiting list. As of early 2014, approximately 120,000 people in the U.S. were awaiting an organ transplant. The solution to this problem is 3D bio-printing. This technology may provide a unique and new opportunity where we can print 3D organs. It incorporates two technologies, tissue engineering and 3D printing. 3D bioprinting involves dispensing cells onto a biocompatible scaffold using a successive layer-by-layer approach to generate tissue-like three-dimensional structures. It uses instruction in the CAD file for formation of the object, high level computer programming and ability to build highly advanced computer systems, it offers hope for bridging the gap between organ shortage and transplantation needs.

2015 ◽  
Vol 237 ◽  
pp. 221-226 ◽  
Author(s):  
Jakub Mielczarek ◽  
Grzegorz Gazdowicz ◽  
Jakub Kramarz ◽  
Piotr Łątka ◽  
Marcin Krzykawski ◽  
...  

3D bioprinting is an innovative method of manufacturing three-dimensional tissue-like structures. The method is based on a layer-by-layer deposition of biocompatible materials successively forming a scaffold for living cells. The technology allows to fabricate complicated tissue morphology, including vascular-like networks. The range of potential applications of 3D bioprinting is immense: from drug testing, across regenerative medicine, to organ transplantation. In this paper, we describe a prototype of a 3D bioprinter utilizing gelatin methacrylate (GelMA) doped with a photoinitiator as the printing substance. Biological requirements for the material, its synthesis and application adequacy for the bioprinting process are discussed. Technical details of the mechanical construction of the bioprinter and its control system are presented


2021 ◽  
Vol 8 ◽  
pp. 40-46
Author(s):  
Victor P. Bessmeltsev ◽  
Nikolay B. Goloshevsky ◽  
Denis H. Katasonov

The paper presents the main characteristics and functionality of a hybrid 3D-printer created at the Institute of Automation and Electrometry SB RAS, containing a portal recording system with dispenser heads for digital inkjet printing and a laser scanning system for subsequent post-processing with precise alignment software. The formation zone is located on a mobile platform moving along the Z coordinate. This design makes it possible, by layer-by-layer additive synthesis, to form three-dimensional structures with given local conductivity.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Milan Šljivić ◽  
Dragoljub Mirjanić ◽  
Nataša Šljivić ◽  
Cristiano Fragassa ◽  
Ana Pavlović

The Additive manufacturing 3D printing is a process of creating a three dimensional solid objects or rapid prototyping of 3D models from a digital file, which builds layer by layer. The 3D bioprinting is a form sophisticated of 3D printing technology involving cells and tissues for the production of tissue for regenerative medicine, which is also built layer by layer into the area of human tissue or organ. This paper defines the modern methods and materials of the AM, which are used for the development of physical models and individually adjusted implants for 3D printing for medical purposes. The main classification of 3D printing and 3D bioprinting technologies are also defined by typical materials and a field of application. It is proven that 3D printing and 3D bioprinting techniques have a huge potential and a possibility to revolutionize the field of medicine.


2020 ◽  
pp. 30-40
Author(s):  
Galina Sroslova ◽  
Yuliya Zimina ◽  
Elena Nesmeyanova ◽  
Margarita Postnova

Three-dimensional (3D) bioprintingis a well-known promising technology for the production of artificial biological organs providing unprecedented versatility for manipulating cells and other biomaterials with precise control of their location in space. Over the past decade, a number of 3D bioprinting technologies have been developed. Unlike traditional manufacturing technologies, 3D bioprinting allows to produce individual or personalized fabric designs. This helps to deposit cells of the desired type with selected biomaterials and desired biologically active substances. Natural polymers play a leading role in maintaining cellular and biomolecular processes before, during, as well as after three-dimensional bioprinting. Polymers of biological origin can be extracted from natural raw materials by means of physical or chemical methods. These polymers are widely used as effective hydrogels for loading cells to form tissues, build a vascular, nervous, lymphatic network, and also to implement multiple biological, biochemical, physiological, biomedical and other functions. Any natural polymers that have a sol-gel phase transition (i.e., a gel point) under certain conditions can be printed using the automatic layer-by-layer deposition method. In fact, very few of them can be printed under various conditions (low temperature, without the help of physical, chemical, biochemical crosslinking of the incorporated polymer chains). Thus, not all natural polymers can meet all the basic requirements for 3D bioprinting. As a rule, natural polymers as the main component of various inks, which contain cells suspended in a specific medium, must meet several basic requirements for successful 3D bioprinting of organs, as well as clinical applications. These include biocompatibility, that is, non-toxic or without apparent toxicity; biodegradability (unlikenon-biodegradable polymers can be used as auxiliary structures); biostability with sufficiently high mechanical strength both at the time of processing and during operation; bioprinterness (workability). This review is devoted to modern research in the field of natural polymers used to print biological artificial organs.


2019 ◽  
Vol 9 (4) ◽  
pp. 811 ◽  
Author(s):  
Ajay Vikram Singh ◽  
Mohammad Hasan Dad Ansari ◽  
Shuo Wang ◽  
Peter Laux ◽  
Andreas Luch ◽  
...  

Three-dimensional (3D) bioprinting promises to change future lifestyle and the way we think about aging, the field of medicine, and the way clinicians treat ailing patients. In this brief review, we attempt to give a glimpse into how recent developments in 3D bioprinting are going to impact vast research ranging from complex and functional organ transplant to future toxicology studies and printed organ-like 3D spheroids. The techniques were successfully applied to reconstructed complex 3D functional tissue for implantation, application-based high-throughput (HTP) platforms for absorption, distribution, metabolism, and excretion (ADME) profiling to understand the cellular basis of toxicity. We also provide an overview of merits/demerits of various bioprinting techniques and the physicochemical basis of bioink for tissue engineering. We briefly discuss the importance of universal bioink technology, and of time as the fourth dimension. Some examples of bioprinted tissue are shown, followed by a brief discussion on future biomedical applications.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3218 ◽  
Author(s):  
Natasha Antill-O’Brien ◽  
Justin Bourke ◽  
Cathal D. O’Connell

The ability to create three-dimensional (3D) models of brain tissue from patient-derived cells, would open new possibilities in studying the neuropathology of disorders such as epilepsy and schizophrenia. While organoid culture has provided impressive examples of patient-specific models, the generation of organised 3D structures remains a challenge. 3D bioprinting is a rapidly developing technology where living cells, encapsulated in suitable bioink matrices, are printed to form 3D structures. 3D bioprinting may provide the capability to organise neuronal populations in 3D, through layer-by-layer deposition, and thereby recapitulate the complexity of neural tissue. However, printing neuron cells raises particular challenges since the biomaterial environment must be of appropriate softness to allow for the neurite extension, properties which are anathema to building self-supporting 3D structures. Here, we review the topic of 3D bioprinting of neurons, including critical discussions of hardware and bio-ink formulation requirements.


2021 ◽  
Vol 22 (8) ◽  
pp. 3971
Author(s):  
Jianhua Zhang ◽  
Esther Wehrle ◽  
Marina Rubert ◽  
Ralph Müller

The field of tissue engineering has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes for regenerative medicine and pharmaceutical research. Conventional scaffold-based approaches are limited in their capacity to produce constructs with the functionality and complexity of native tissue. Three-dimensional (3D) bioprinting offers exciting prospects for scaffolds fabrication, as it allows precise placement of cells, biochemical factors, and biomaterials in a layer-by-layer process. Compared with traditional scaffold fabrication approaches, 3D bioprinting is better to mimic the complex microstructures of biological tissues and accurately control the distribution of cells. Here, we describe recent technological advances in bio-fabrication focusing on 3D bioprinting processes for tissue engineering from data processing to bioprinting, mainly inkjet, laser, and extrusion-based technique. We then review the associated bioink formulation for 3D bioprinting of human tissues, including biomaterials, cells, and growth factors selection. The key bioink properties for successful bioprinting of human tissue were summarized. After bioprinting, the cells are generally devoid of any exposure to fluid mechanical cues, such as fluid shear stress, tension, and compression, which are crucial for tissue development and function in health and disease. The bioreactor can serve as a simulator to aid in the development of engineering human tissues from in vitro maturation of 3D cell-laden scaffolds. We then describe some of the most common bioreactors found in the engineering of several functional tissues, such as bone, cartilage, and cardiovascular applications. In the end, we conclude with a brief insight into present limitations and future developments on the application of 3D bioprinting and bioreactor systems for engineering human tissue.


2013 ◽  
Vol 135 (9) ◽  
Author(s):  
Yin Yu ◽  
Yahui Zhang ◽  
James A. Martin ◽  
Ibrahim T. Ozbolat

Organ printing is a novel concept recently introduced in developing artificial three-dimensional organs to bridge the gap between transplantation needs and organ shortage. One of the major challenges is inclusion of blood-vessellike channels between layers to support cell viability, postprinting functionality in terms of nutrient transport, and waste removal. In this research, we developed a novel and effective method to print tubular channels encapsulating cells in alginate to mimic the natural vascular system. An experimental investigation into the influence on cartilage progenitor cell (CPCs) survival, and the function of printing parameters during and after the printing process were presented. CPC functionality was evaluated by checking tissue-specific genetic marker expression and extracellular matrix production. Our results demonstrated the capability of direct fabrication of cell-laden tubular channels by our newly designed coaxial nozzle assembly and revealed that the bioprinting process could induce quantifiable cell death due to changes in dispensing pressure, coaxial nozzle geometry, and biomaterial concentration. Cells were able to recover during incubation, as well as to undergo differentiation with high-level cartilage-associated gene expression. These findings may not only help optimize our system but also can be applied to biomanufacturing of 3D functional cellular tissue engineering constructs for various organ systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dezhi Lu ◽  
Yang Liu ◽  
Wentao Li ◽  
Hongshi Ma ◽  
Tao Li ◽  
...  

Three-dimensional (3D) bioprinting is a revolutionary technology that replicates 3D functional living tissue scaffolds in vitro by controlling the layer-by-layer deposition of biomaterials and enables highly precise positioning of cells. With the development of this technology, more advanced research on the mechanisms of tissue morphogenesis, clinical drug screening, and organ regeneration may be pursued. Because of their self-renewal characteristics and multidirectional differentiation potential, induced pluripotent stem cells (iPSCs) have outstanding advantages in stem cell research and applications. In this review, we discuss the advantages of different bioinks containing human iPSCs that are fabricated by using 3D bioprinting. In particular, we focus on the ability of these bioinks to support iPSCs and promote their proliferation and differentiation. In addition, we summarize the applications of 3D bioprinting with iPSC-containing bioinks and put forward new views on the current research status.


2018 ◽  
Vol 923 ◽  
pp. 79-83 ◽  
Author(s):  
Mehmet Onur Aydogdu ◽  
Nazmi Ekren ◽  
Osman Kilic ◽  
Faik Nüzhet Oktar ◽  
Oguzhan Gunduz

In this present work, an original 3D bioprinting method has been developed by modifying an exceptional 3D printer. Using a composite material, bioprinting was carried out to create the ideal scaffold material to contribute regeneration of the certain amount of tissue types in humans. After bypassing the extruder and heating system of the 3D printer, instead of using solid filaments, polymer-ceramic composite was dissolved using an organic agent and bioprinting was conducted. During the bioprinting, dissolving agent was evaporated quickly and solidification process was completed. Despite of the traditional 3D printing, which benefits from the glass transition temperature of the materials, regardless of the temperature, rapid prototyping technology has been merged with controlled flow rate of the composite solution and evaporation of the solvents were adjusted meticulously for proper solidification and layer by layer bioprinting of the scaffolds.


Sign in / Sign up

Export Citation Format

Share Document