scholarly journals PV Tracking Design Methodology Based on an Orientation Efficiency Chart

2019 ◽  
Vol 9 (5) ◽  
pp. 894 ◽  
Author(s):  
José Ruelas ◽  
Flavio Muñoz ◽  
Baldomero Lucero ◽  
Juan Palomares

This work describes a new photovoltaic (PV) sun tracker design methodology that utilizes the advantages that the orientation and efficiency of the PV panel offer due to the latitude of the installation zone. Furthermore, the proposed design methodology is validated experimentally via the implementation of a solar tracker with dual axes at a specific location (27.5° latitude). In this case, the methodology enables the incorporation of a high-availability, low-accuracy, and low-cost tracking mechanism. Based on the results, the feasibility of this type of solar tracker for latitudes close to 30° is demonstrated, as this tracking system costs 27% less than the traditional commercial systems that use slew drives. This system increases the collection efficiency by 24% with respect to a fixed device. The proposed methodology, which is based on an orientation efficiency chart, can be applied to the construction or control of other types of solar tracker systems.

Author(s):  
José Ruelas ◽  
Benjamin Pusch ◽  
Flavio Muños ◽  
Juan Delfin ◽  
Francisco Javier Ochoa Estrella

This article proposes a new photovoltaic (PV) solar tracker design based on the advantage that installation latitude offers according to efficiency in function of orientation (EFO) of PVs. First, is described a methodology to let incorporate a low-precision, low-cost and high-availability solar tracking mechanism and control system. The design methodology considers the installation location (latitude and azimuth) as a starting point for establishing an adequate angular range of EFO, simultaneity the aspects of available technology and the knowledge accords to developer. Finally, the design technique is experimentally validated by the implementation of a solar tracker at latitude of 28° longitude of 109° and evaluates the efficiency on a specific day. According to result the feasibility of this type of solar tracker for latitudes close to or greater than 30° is highlighted, given that this tracking system costs 30% less than traditional commercial systems as slew drive with its incorporation of lower-resolution azimuth tracking mechanisms. It also increases collection efficiency by 26%, just as continuous or time-based dual-axis solar trackers do, without the more complex controls and mechanisms of these designs.


Author(s):  
Anees Abu Sneineh ◽  
Wael A. Salah

This paper presents the design and implementation of a closed-loop solar tracker system. The demand for clean energy sources has increased along with the rising demand for electrical energy and the increasing amount of environment pollution triggered by fuel consumption. Among these sources, solar energy is considered the most feasible given its wide availability and easy operation in different environments. The main purpose of this study is to maximize the generated photovoltaic power and reduce CO<sub>2</sub> emissions by designing an efficient and low-cost solar tracking system. An aligned closed-loop solar tracker is designed and constructed to achieve the best accuracy. The proposed system shows more freedom in its movement to overcome the problems associated with the tilt of the frame-holder. A PIC microcontroller based on the Flowcode programming language is used, the position feedback is detected by using a photo-sensor, and the H-Bridge driver is used to control two DC motors. According to the experimental results, the proposed system shows significant improvements in efficiency compared with stationary solar tracking systems.


Author(s):  
Siti Amely Jumaat ◽  
Adam Afiq Azlan Tan ◽  
Mohd Noor Abdullah ◽  
Nur Hanis Radzi ◽  
Rohaiza Hamdan ◽  
...  

<span lang="EN-MY">This project discusses on the development of horizontal single axis solar tracker using Arduino UNO which is cheaper, less complex and can still achieved the required efficiency. For the development of horizontal single axis solar tracking system, five light dependent resistors (LDR) has been used for sunlight detection and to capture the maximum light intensity. A servo motor is used to rotate the solar panel to the maximum light source sensing by the light dependent resistor (LDR) in order to increase the efficiency of the solar panel and generate the maximum energy. The efficiency of the system has been tested and compared with the static solar panel on several time intervals. A small prototype of horizontal single axis solar tracking system will be constructed to implement the design methodology presented here. As a result of solar tracking system, solar panel will generate more power, voltage, current value and higher efficiency. </span>


2021 ◽  
Vol 1 (2) ◽  
pp. 186-197
Author(s):  
Mst Jesmin Nahar ◽  
Md Rasel Sarkar ◽  
Moslem Uddin ◽  
Md Faruk Hossain ◽  
Md Masud Rana ◽  
...  

This paper presents the design and execution of a solar tracker system devoted to photovoltaic (PV) conversion panels. The proposed single-axis solar tracker is shifted automatically based on the sunlight detector or tracking sensor. This system also removes incident sunlight overlapping from sensors that are inside the sunlight tracking system. The Light Dependent Resistor (LDR) is used as a sensor to sense the intensity of light accurately. The sensors are placed at a certain distance from each other in the tracker system to avoid sunlight overlapping for maximum power production. The total system is designed by using a microcontroller (PIC16F877A) as a brain to control the whole system. The solar panel converts sunlight into electricity. The PV panel is fixed with a vertical axis of the tracker. This microcontroller will compare the data and rotate a solar panel via a stepper motor in the right direction to collect maximum photon energy from sunlight. From the experimental results, it can be determined that the automatic (PV solar tracker) sun tracking system is 72.45% more efficient than fixed panels, where the output power of the fixed panel and automatically adjusted panel are 8.289 watts and 14.287 watts, respectively.


Author(s):  
Hachimenum Nyebuchi Amadi ◽  
Sebastian Gutierrez

Most rural dwellers in developing countries do not have access to adequate and regular supply of energy and most of these estimated two billion people are poor with no sustainable means of livelihood and therefore rely on wood fuel for their cooking and heating needs. And due to lack of energy, including electricity, socio-economic development is either absent or at abysmally low level. To foster rural development and improved living conditions among this populace, there is need for a reliable, low cost and environmentally risk-free source of energy. This work designed, implemented and evaluated the performance of a dual axis solar tracking system (DATS) using light dependent resistor (LDR) sensors, direct current (DC) motors and microcontroller to make it capable of uninterruptible electricity supply for rural applications. Results of the experiment show that the proposed system is more cost-effective and produces 31.4 % more energy than the single axis tracking system (SATS) and 67.9 % more than the fixed PV panel system (FPPS). Owing to the unique design of the proposed tracking system, solar energy can be tracked and stored continuously so that there is adequate electricity for the consuming population at all times. Though tested on a rural community in Abia State, Nigeria, the proposed system can be adapted to rural communities anywhere in the world.  


2014 ◽  
Vol 12 (3) ◽  
pp. 389-407 ◽  
Author(s):  
Wael M. El-Medany ◽  
Alauddin Al-Omary ◽  
Riyadh Al-Hakim ◽  
Mustafa Nusaif

Purpose – The purpose of this paper is to present a development to the hardware and software of a real-time tracking system that provides the position of the tracked vehicle accurately using fairly low-cost equipment and services. Vehicle tracking industries are expanding as businesses are interested to know their fleet vehicles positions minute by minute every day. Many systems were proposed recently that can provide such information. Design/methodology/approach – The system is implemented using GM862 cellular quad band module. A monitoring server and a graphical user interface on a Web site have also been implemented to view the current location of a vehicle on a specific map. Findings – The experiments were conducted and tested in different areas of the Kingdom Of Bahrain using Google maps, and results are discussed. Originality/value – The developed system has been compared to the available and imported tracking systems to some of the telematics companies in Bahrain, and the comparison has been discussed.


Author(s):  
Richard Eberechi Echendu ◽  
Hachimenum Nyebuchi Amadi

This work focuses on the performance evaluation of a Standalone Solar Photovoltaic (PV) system for electricity generation in an estate requiring a daily power consumption of 50KW. This was achieved through a solar tracker software/hardware – embedded programme control system. A programmable microcontroller (PIC16F877A), light detection sensors (CDS NORP 12), motor driver IC (L293D), power relays (NTE-R22-5) and a dc gear motor with linear actuator (HARL-3618) were used. MikroC Pro compiler from Mikro Electroniker was used to programme the PIC16F877A. A fixed PV panel of same size was placed side by side and tested with the solar tracking system. The test results obtained showed that the solar tracking system produced 14.3W at 8:00am, increases to a maximum of 25.83W at 1:00pm and decreased to 16.28W at 6:00pm while the fixed PV panel produced 5W at 8:00am, increased to a maximum of 25.62W at 1:00pm and decreased to 10.6W at 6:00pm. These results gave the solar tracking system an efficiency increase of 33 percent over the fixed system. The designed system installed in residential homes has capacity to guarantee sustainable, durable and improved power supply.


Author(s):  
Louis Tersoo Abiem ◽  
Clement Olufemi Akoshile ◽  
Taiye Benjamin Ajibola

A solar tracker is a system that is used for the mechanical orientation of solar payloads (collectors and photovoltaic panels) towards the sun. A simple, low-cost, but effective open-loop dual axis solar tracking system was developed in this work. The tracker is an embedded system that consists of a microcontroller integrated with other components in an electronic circuit to coordinate the activities of the circuit in driving out and in the motor shafts of electrically powered linear actuators used to move the payload. The work is divided into two parts: hardware and software. The hardware part consists of two movable (tilting and axial moving) rectangular frames fixed together and used to hold the payload and two electrically powered linear actuators (jacks) used to move the rectangular frames in the tilting and axial directions. The software part was a code written in the C programming language following an algorithm developed from measured parameters of the jacks and the sun’s position and embedded into a microcontroller. The testing of the dual-axis solar tracker was done by measuring a parabolic trough collector’s position with respect to the sun hour angles and solar declination angles and comparing the values with the calculated angles for two days. The results obtained showed that the tracker followed the sun with deviation of ±2o (percentage errors that ranged between 0.01% and 3.26%).


Author(s):  
Hemant Kumar Nayak ◽  
Manoj Kumar ◽  
Nagendra Prasad ◽  
Rashmi Rekha Behera

This paper presents the design and experimental study of a two axis (azimuth and Polar) automatic control solar tracking system to track solar PV panel according to the direction of beam propagation of solar radiation. The designed tracking system consists of sensor and Microcontroller with built in ADC operated control circuits to drive motor. Two steeper motors are used to move the system panel, keeping the sun’s beam at the center of the sensor. The measured variables are compared with the fixed axis. The results indicate that the energy surplus becomes about (45-56%) with atmospheric influences. In case of seasonal changes of the sun’s position there is no need to change in the hardware and software of the system. . Considering all above aspects of this tracking system it can be concluded that, it is a flexible tracking system with low cost electromechanical set-up, low maintenance requirements and ease on installation and operation.


Sign in / Sign up

Export Citation Format

Share Document