scholarly journals Design PV Tracking System According to Efficiency in Function of Orientation

Author(s):  
José Ruelas ◽  
Benjamin Pusch ◽  
Flavio Muños ◽  
Juan Delfin ◽  
Francisco Javier Ochoa Estrella

This article proposes a new photovoltaic (PV) solar tracker design based on the advantage that installation latitude offers according to efficiency in function of orientation (EFO) of PVs. First, is described a methodology to let incorporate a low-precision, low-cost and high-availability solar tracking mechanism and control system. The design methodology considers the installation location (latitude and azimuth) as a starting point for establishing an adequate angular range of EFO, simultaneity the aspects of available technology and the knowledge accords to developer. Finally, the design technique is experimentally validated by the implementation of a solar tracker at latitude of 28° longitude of 109° and evaluates the efficiency on a specific day. According to result the feasibility of this type of solar tracker for latitudes close to or greater than 30° is highlighted, given that this tracking system costs 30% less than traditional commercial systems as slew drive with its incorporation of lower-resolution azimuth tracking mechanisms. It also increases collection efficiency by 26%, just as continuous or time-based dual-axis solar trackers do, without the more complex controls and mechanisms of these designs.

2019 ◽  
Vol 9 (5) ◽  
pp. 894 ◽  
Author(s):  
José Ruelas ◽  
Flavio Muñoz ◽  
Baldomero Lucero ◽  
Juan Palomares

This work describes a new photovoltaic (PV) sun tracker design methodology that utilizes the advantages that the orientation and efficiency of the PV panel offer due to the latitude of the installation zone. Furthermore, the proposed design methodology is validated experimentally via the implementation of a solar tracker with dual axes at a specific location (27.5° latitude). In this case, the methodology enables the incorporation of a high-availability, low-accuracy, and low-cost tracking mechanism. Based on the results, the feasibility of this type of solar tracker for latitudes close to 30° is demonstrated, as this tracking system costs 27% less than the traditional commercial systems that use slew drives. This system increases the collection efficiency by 24% with respect to a fixed device. The proposed methodology, which is based on an orientation efficiency chart, can be applied to the construction or control of other types of solar tracker systems.


Author(s):  
Anees Abu Sneineh ◽  
Wael A. Salah

This paper presents the design and implementation of a closed-loop solar tracker system. The demand for clean energy sources has increased along with the rising demand for electrical energy and the increasing amount of environment pollution triggered by fuel consumption. Among these sources, solar energy is considered the most feasible given its wide availability and easy operation in different environments. The main purpose of this study is to maximize the generated photovoltaic power and reduce CO<sub>2</sub> emissions by designing an efficient and low-cost solar tracking system. An aligned closed-loop solar tracker is designed and constructed to achieve the best accuracy. The proposed system shows more freedom in its movement to overcome the problems associated with the tilt of the frame-holder. A PIC microcontroller based on the Flowcode programming language is used, the position feedback is detected by using a photo-sensor, and the H-Bridge driver is used to control two DC motors. According to the experimental results, the proposed system shows significant improvements in efficiency compared with stationary solar tracking systems.


Author(s):  
Siti Amely Jumaat ◽  
Adam Afiq Azlan Tan ◽  
Mohd Noor Abdullah ◽  
Nur Hanis Radzi ◽  
Rohaiza Hamdan ◽  
...  

<span lang="EN-MY">This project discusses on the development of horizontal single axis solar tracker using Arduino UNO which is cheaper, less complex and can still achieved the required efficiency. For the development of horizontal single axis solar tracking system, five light dependent resistors (LDR) has been used for sunlight detection and to capture the maximum light intensity. A servo motor is used to rotate the solar panel to the maximum light source sensing by the light dependent resistor (LDR) in order to increase the efficiency of the solar panel and generate the maximum energy. The efficiency of the system has been tested and compared with the static solar panel on several time intervals. A small prototype of horizontal single axis solar tracking system will be constructed to implement the design methodology presented here. As a result of solar tracking system, solar panel will generate more power, voltage, current value and higher efficiency. </span>


Author(s):  
José Juan Hernández-Medina ◽  
Hilario López-Xelo ◽  
José Luis Cabrera-Pérez ◽  
Aldo Hernández-Díaz

Photovoltaic systems with Fresnel lenses are expensive, as well as technologically complex, due to their optical, mechanical and control components. In addition, all these systems are sensitive to operation and maintenance costs. This article proposes the use of commercial Fresnel lenses to improve the efficiency of photovoltaic modules, in conjunction with a fuzzy intelligent controlled solar tracking system with two-axis and a novel low-cost robotic cleaning system. The basic idea is that this system optimizes the production of electricity in an economically and technologically simple way. The technology of Arduino microcontrollers and fuzzy logic for control, as well as the geometry of Fresnel lenses, will be used to concentrate solar energy in a small area, not to mention that these optical devices have a low weight. The accumulated effect of energy production will be improved by a novel low cost robotic cleaning system. The alignment and perpendicularity of the impact of solar energy on photovoltaic cells must be maintained as much as possible and the performance of this system must be compared with other more expensive and technologically more complex commercial systems.


Author(s):  
Louis Tersoo Abiem ◽  
Clement Olufemi Akoshile ◽  
Taiye Benjamin Ajibola

A solar tracker is a system that is used for the mechanical orientation of solar payloads (collectors and photovoltaic panels) towards the sun. A simple, low-cost, but effective open-loop dual axis solar tracking system was developed in this work. The tracker is an embedded system that consists of a microcontroller integrated with other components in an electronic circuit to coordinate the activities of the circuit in driving out and in the motor shafts of electrically powered linear actuators used to move the payload. The work is divided into two parts: hardware and software. The hardware part consists of two movable (tilting and axial moving) rectangular frames fixed together and used to hold the payload and two electrically powered linear actuators (jacks) used to move the rectangular frames in the tilting and axial directions. The software part was a code written in the C programming language following an algorithm developed from measured parameters of the jacks and the sun’s position and embedded into a microcontroller. The testing of the dual-axis solar tracker was done by measuring a parabolic trough collector’s position with respect to the sun hour angles and solar declination angles and comparing the values with the calculated angles for two days. The results obtained showed that the tracker followed the sun with deviation of ±2o (percentage errors that ranged between 0.01% and 3.26%).


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 535
Author(s):  
Cătălin Alexandru

The article deals with the optimization of the azimuthal tracking mechanism for a photovoltaic (PV) platform, which uses linear actuators as actuation elements for both movements (diurnal and elevation). In the case of diurnal movement, where the platform’s angular field of orientation is large, a mechanism with a relatively simple structure is used for amplifying the actuator’s stroke and avoiding the risk of the system locking itself (by limiting the values of the transmission angle). The optimization study targets the mechanical device, the control device, and the bi-axial tracking program (embodied by the laws of motion in time for the platform’s diurnal and elevation angles) with the purpose of obtaining a high input of solar radiation, with a minimal energy consumption to achieve tracking. The study is carried out by using a virtual prototyping platform, which includes Computer Aided Design (CAD), Multi-Body Systems (MBS), and Design for Control (DFC) computer applications. The mechanical and control devices of the solar tracker are integrated and tested in mechatronic concept. The simulations’ results, which were performed for a set of representative days throughout the year, prove the effectiveness of the proposed design.


2020 ◽  
Vol 15 (4) ◽  
pp. 613-619
Author(s):  
Li Kong ◽  
Yunpeng Zhang ◽  
Zhijian Lin ◽  
Zhongzhu Qiu ◽  
Chunying Li ◽  
...  

Abstract The present work aimed to select the optimum solar tracking mode for parabolic trough concentrating collectors using numerical simulation. The current work involved: (1) the calculation of daily solar radiation on the Earth’s surface, (2) the comparison of annual direct solar radiation received under different tracking modes and (3) the determination of optimum tilt angle for the north-south tilt tracking mode. It was found that the order of solar radiation received in Shanghai under the available tracking modes was: dual-axis tracking &gt; north-south Earth’s axis tracking &gt; north-south tilt tracking (β = 15°) &gt; north-south tilt tracking (β = 45) &gt; north-south horizontal tracking &gt; east-west horizontal tracking. Single-axis solar tracking modes feature simple structures and low cost. This study also found that the solar radiation received under the north-south tilt tracking mode was higher than that of the north-south Earth’s axis tracking mode in 7 out of 12 months. Therefore, the north-south tilt tracking mode was studied separately to determine the corresponding optimum tilt angles in Haikou, Lhasa, Shanghai, Beijing and Hohhot, respectively, which were shown as follows: 18.81°, 27.29°, 28.67°, 36.21° and 37.97°.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3308-3311

This paper presents the outline and execution of simple, easy and cheaper automatic dual axis solar tracking system using Arduino UNO as the control element and light detecting sensors (LDRS) as the sensing element. This project involves advanced level of technology to capture maximum amount of energy using sun’s radiations. The main purpose is to increase the efficiency of tracking system which can rotate in all four directions continuously according to intensity of radiations and for energy conversion. In this, the voltage from panel is calculated from time to time in an interval of 1hr and this voltage is used to sense the weather conditions and display the climatic temperatures


2021 ◽  
Vol 2107 (1) ◽  
pp. 012024
Author(s):  
Lim Xin You ◽  
Nordiana Shariffudin ◽  
Mohd Zamri Hasan

Abstract Nowadays, solar energy’s popularity is growing consistently every year, along with the growth of amazing solar technologies, which is considered to be one of the most popular. Non-renewable energy like petrol and gasoline is being replaced with solar energy, which is renewable energy. The main objective of this project is to design and simulate a robot solar system. The robot is developed using Arduino Mega 2560 as the main brain of the system. This system is equipped with a solar tracking system to track the movement of the sun and LDR is used to detect the presence of sunlight. The solar tracker is used to get the maximum efficiency of solar energy and reduce power losses. In addition, the solar tracker can rotate from 0° - 180°, which is the best angle for the solar panel to reach the sunlight. This robot will be attached to the sprinkler system to perform the watering process. This robot is developed for use in the agriculture field to reduce the manpower and cost of the watering process. Three analyses will be conducted in this project such as solar panel analysis, Wi-Fi connectivity analysis and sprinkler system analysis. The result shows the solar panel will gain the highest intensity of the sunlight at 12.00 pm and a sunny day compared to the other time and a cloudy day. The maximum range of Wi-Fi connectivity and the water pump, time used to finish the watering process and watering area will be discussed.


Sign in / Sign up

Export Citation Format

Share Document