scholarly journals Numerical Investigations on the Water Entry of Cylindrical Projectiles with Different Initial Conditions

2019 ◽  
Vol 9 (9) ◽  
pp. 1858 ◽  
Author(s):  
Jianguo Gao ◽  
Zhihua Chen ◽  
Wei-Tao Wu ◽  
Xin Li

In this paper, coupled with Reynolds-averaged Navier–Stokes equations and ballistic equations, the numerical simulations of high-speed water entry of projectiles under different conditions have been conducted. The water-gas flow was modeled by the mixture multiphase model. The numerical results indicated that the simulations agree well with analytical solutions by two cavity models, which validates the model applied. Then the effects of variations of project length, entry angle and velocity on the entry process of projectiles were further investigated. The results show that, for small water entry angles, the cavity wall interacts with the projectile, affects the trajectory of the projectile, and even ricochets for projectiles with small length (5D). On the other hand, the projectile vibrates during the whole process of water entry; the vibration amplitude decreases with the increase of projectile length and entry angle; however, it is the contrary for the vibration period. Furthermore, after the initial impact period, the influence of these parameters on the drag coefficient is not obvious.

2015 ◽  
Vol 76 (10) ◽  
Author(s):  
Norhazwani Abd Malek ◽  
Syarir Akram Jamaluddin ◽  
Mohd Zamri Yusoff ◽  
Hasril Hasini

This study is mainly to investigate the unsteady flows due to supercritical heat addition in high speed condensing steam in steam turbines. To achieve this, condensation flow characteristic is investigated on 2D converging-diverging nozzle. A Computational Fluid Dynamics (CFD) code (FLUENT package) that adopted the Eulerian-Eulerian approach for modeling wet steam flow, was used. The condensing flow is governed by the compressible Navier-Stokes equations in conjunction with a wet steam multiphase model. The turbulence model selected for this work is Spalart Allmaras model which is based on the Reynolds Averaged Navier Stoke (RANS) model available in FLUENT. Results are then compared with previous researchers that use different methods including user defined code and experiment. The importance of this research study is to determine the accuracy of the software and method used and to compare the results with other researchers.The current work shows good agreement with the experimental data done by Skilling [1] and 2D calculations done by Yusoff et al. [2]. It is found from the numerical simulation results that the supercritical heat addition has caused the flow in the condensing steam to retard and gives rise to pressure oscillations. The unsteady supercritical heat addition reveals promising results indicating the capability of FLUENT to calculate this phenomenon which might cause instability in turbine channel.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Qing Mu ◽  
Yipin Lv ◽  
Kangjian Wang ◽  
Tianhong Xiong ◽  
Wenjun Yi

To explore the effects of water entry angle on the cavitation flow field of high-speed revolution body, based on the finite volume method, VOF (Volume of Fluid) multiphase model, Schnerr-Sauer cavity model, SST k-ω turbulence model, and dynamic mesh method, numerical simulation for modeling the oblique water entry of revolution body at high speed is performed. The evolution laws of cavity shape, motion characteristics, and hydrodynamic characteristics of revolution body at different water entry angles are analyzed. The results show that the numerical calculation method can effectively simulate the change of cavity shape during the water entry of the revolution body. With the increase of water entry angle, the uplift of liquid level decreases in the positive direction of the open cavity and increases in the negative direction. The angle of water entry has little effect on the velocity of the revolution body. The larger the angle of water entry, the greater the peak pressure and the faster the pressure decay at the moment of water entry.


2021 ◽  
Vol 14 (2) ◽  
pp. 40-45
Author(s):  
D. V. VORONIN ◽  

The Navier-Stokes equations have been used for numerical modeling of chemically reacting gas flow in the propulsion chamber. The chamber represents an axially symmetrical plane disk. Fuel and oxidant were fed into the chamber separately at some angle to the inflow surface and not parallel one to another to ensure better mixing of species. The model is based on conservation laws of mass, momentum, and energy for nonsteady two-dimensional compressible gas flow in the case of axial symmetry. The processes of viscosity, thermal conductivity, turbulence, and diffusion of species have been taken into account. The possibility of detonation mode of combustion of the mixture in the chamber was numerically demonstrated. The detonation triggering depends on the values of angles between fuel and oxidizer jets. This type of the propulsion chamber is effective because of the absence of stagnation zones and good mixing of species before burning.


2021 ◽  
Vol 143 (12) ◽  
Author(s):  
Leoluca Scurria ◽  
Tommaso Tamarozzi ◽  
Oleg Voronkov ◽  
Dieter Fauconnier

Abstract When simulating elastohydrodynamic lubrication, two main approaches are usually followed to predict the pressure and fluid film thickness distribution throughout the contact. The conventional approach relies on the Reynolds equation to describe the thin lubricant film, which is coupled to a Boussinesq description of the linear elastic deformation of the solids. A more accurate, yet a time-consuming method is the use of computational fluid dynamics in which the Navier–Stokes equations describe the flow of the thin lubricant film, coupled to a finite element solver for the description of the local contact deformation. This investigation aims at assessing both methods for different lubrication conditions in different elastohydrodynamic lubrication (EHL) regimes and quantify their differences to understand advantages and limitations of both methods. This investigation shows how the results from both approaches deviate for three scenarios: (1) inertial contributions (Re > 1), i.e., thick films, high speed, and low viscosity; (2) high shear stresses leading to secondary flows; and (3) large deformations of the solids leading to inaccuracies of the Boussinesq equation.


Volume 3 ◽  
2004 ◽  
Author(s):  
Erik D. Svensson

In this work we computationally characterize fluid mixing in a number of passive microfluidic mixers. Generally, in order to systematically study and characterize mixing in realistic fluid systems we (1) compute the fluid flow in the systems by solving the stationary three-dimensional Navier-Stokes equations or Stokes equations with a finite element method, and (2) compute various measures indicating the degree of mixing based on concepts from dynamical systems theory, i.e., the sensitive dependence on initial conditions and mixing variance.


2016 ◽  
pp. 92-97
Author(s):  
R. E. Volkov ◽  
A. G. Obukhov

The rectangular parallelepiped explicit difference schemes for the numerical solution of the complete built system of Navier-Stokes equations. These solutions describe the three-dimensional flow of a compressible viscous heat-conducting gas in a rising swirling flows, provided the forces of gravity and Coriolis. This assumes constancy of the coefficient of viscosity and thermal conductivity. The initial conditions are the features that are the exact analytical solution of the complete Navier-Stokes equations. Propose specific boundary conditions under which the upward flow of gas is modeled by blowing through the square hole in the upper surface of the computational domain. A variant of parallelization algorithm for calculating gas dynamic and energy characteristics. The results of calculations of gasdynamic parameters dependency on the speed of the vertical blowing by the time the flow of a steady state flow.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 168 ◽  
Author(s):  
Agostino Lauria ◽  
Giancarlo Alfonsi ◽  
Ali Tafarojnoruz

Ski jump spillways are frequently implemented to dissipate energy from high-speed flows. The general feature of this structure is to transform the spillway flow into a free jet up to a location where the impact of the jet creates a plunge pool, representing an area for potential erosion phenomena. In the present investigation, several tests with different ski jump bucket angles are executed numerically by means of the OpenFOAM® digital library, taking advantage of the Reynolds-averaged Navier–Stokes equations (RANS) approach. The results are compared to those obtained experimentally by other authors as related to the jet length and shape, obtaining physical insights into the jet characteristics. Particular attention is given to the maximum pressure head at the tailwater. Simple equations are proposed to predict the maximum dynamic pressure head acting on the tailwater, as dependent upon the Froude number, and the maximum pressure head on the bucket. Results of this study provide useful suggestions for the design of ski jump spillways in dam construction.


2020 ◽  
Vol 10 (22) ◽  
pp. 7952
Author(s):  
Qiang Wang ◽  
Boran Zhang ◽  
Pengyao Yu ◽  
Guangzhao Li ◽  
Zhijiang Yuan

The bow-flared section may be simplified in the prediction of slamming loads and whipping responses of ships. However, the difference of hydrodynamic characteristics between the water entry of the simplified sections and that of the original section has not been well documented. In this study, the water entry of several different bow-flared sections was numerically investigated using the computational fluid dynamics method based on Reynolds-averaged Navier–Stokes equations. The motion of the grid around the section was realized using the overset mesh method. Reasonable grid size and time step were determined through convergence studies. The application of the numerical method in the water entry of bow-flared sections was validated by comparing the present predictions with previous numerical and experimental results. Through a comparative study on the water entry of one original section and three simplified sections, the influences of simplification of the bow-flared section on hydrodynamic characteristics, free surface evolution, pressure field, and impact force were investigated and are discussed here.


1998 ◽  
Vol 120 (4) ◽  
pp. 930-936 ◽  
Author(s):  
P. Mosher ◽  
D. W. Childs

This research investigates the effect of varying the concentric recess pressure ratio of hybrid (combination hydrostatic and hydrodynamic) bearings to be used in high-speed, high-pressure applications. Bearing flowrate, load capacity, torque, rotordynamic coefficients, and whirl frequency ratio are examined to determine the concentric, recess-pressure ratio which yields optimum bearing load capacity and dynamic stiffness. An analytical model, using two-dimensional bulk-flow Navier-Stokes equations and anchored by experimental test results, is used to examine bearing performance over a wide range of concentric recess pressure ratios. Typically, a concentric recess pressure ratio of 0.50 is used to obtain maximum bearing load capacity. This analysis reveals that theoretical optimum bearing performance occurs for a pressure ratio near 0.40, while experimental results indicate the optimum value to he somewhat higher than 0.45. This research demonstrates the ability to analytically investigate hybrid bearings and shows the need for more hybrid-bearing experimental data.


2018 ◽  
Vol 10 (6) ◽  
pp. 168781401878365 ◽  
Author(s):  
Zhaoyong Mao ◽  
Jingang Bai

The development of underwater vehicles is facing the problem of sustainable energy supply. This study introduces a small water turbine, the Lenz turbine, for energy generation from the ocean currents which will provide energy for the underwater vehicles. Computational fluid dynamics simulations of the effect of geometric parameters, including the blade radius, chord length, and pitch angle, on the performance of the turbine are conducted. The Reynolds-Averaged Navier–Stokes equations are numerically solved with a sliding mesh method. Thirteen sets of tests in total are performed at different values of tip-speed ratios. The tests are divided into three groups to study the effect of the three parameters mentioned above, separately. The obtained power coefficients, coefficient of torque, and the dynamic torque on a blade are then compared in each group of tests. Pressure contours and velocity contours are given to explain the reason how the geometric parameters affect the rotor performance.


Sign in / Sign up

Export Citation Format

Share Document