scholarly journals Determination of the Material Parameters in the Holzapfel-Gasser-Ogden Constitutive Model for Simulation of Age-Dependent Material Nonlinear Behavior for Aortic Wall Tissue under Uniaxial Tension

2019 ◽  
Vol 9 (14) ◽  
pp. 2851 ◽  
Author(s):  
Up Huh ◽  
Chung-Won Lee ◽  
Ji-Hun You ◽  
Chan-Hee Song ◽  
Chi-Seung Lee ◽  
...  

In this study, computational simulations and experiments were performed to investigate the mechanical behavior of the aorta wall because of the increasing occurrences of aorta-related diseases. The study focused on the deformation and strength of porcine and healthy human abdominal aortic tissues under uniaxial tensile loading. The experiments for the mechanical behavior of the arterial tissue were conducted using a uniaxial tensile test apparatus to validate the simulation results. In addition, the strength and stretching of the tissues in the abdominal aorta of a healthy human as a function of age were investigated based on the uniaxial tensile tests. Moreover, computational simulations using the ABAQUS finite element analysis program were conducted on the experimental scenarios based on age, and the Holzapfel–Gasser–Ogden (HGO) model was applied during the simulation. The material parameters and formulae to be used in the HGO model were proposed to identify the failure stress and stretch correlation with age.

2016 ◽  
Vol 866 ◽  
pp. 186-190
Author(s):  
Jung Han Song ◽  
J.S. Park ◽  
C.A. Lee ◽  
H.Y. Kim ◽  
W.H. Choi

The identification of the material models which are used in the finite element analysis for the forming operation and springback are very important in terms of accurate predictions. The aim of this paper is to characterize both the anisotropy and the hardening of the ultra-high strength steel such as martensitic steel (MS steel) in order to identify material parameters of constitutive equation, which able to reproduce the mechanical behavior. Uniaxial tensile tests were carried out for characterizing the anisotropic plastic behavior of the MS steel. Cyclic tests under tension-compression load were also carried out for characterizing the Bauschinger effect during reverse deformation. Yoshida-Uemori hardening model associated with orthotropic yield criterion Hill’s 1948 is used to represent the in-plane mechanical behavior of the martensitic steel. The resented results show a very good agreement between model predictions and experiments: flow stresses during loading and reverse loading are well reproduced.


2005 ◽  
Vol 128 (3) ◽  
pp. 409-418 ◽  
Author(s):  
W. Yang ◽  
T. C. Fung ◽  
K. S. Chian ◽  
C. K. Chong

The esophagus, like other soft tissues, exhibits nonlinear and anisotropic mechanical properties. As a composite structure, the properties of the outer muscle and inner mucosal layer are different. It is expected that the complex mechanical properties will induce nonhomogeneous stress distributions in the wall and nonuniform tissue remodeling. Both are important factors which influence the function of mechanosensitive receptor located in various layers of the wall. Hence, the characterization of the mechanical properties is essential to understand the neuromuscular motion of the esophagus. In this study, the uniaxial tensile tests were conducted along two mutually orthogonal directions of porcine esophageal tissue to identify the directional (circumferential and axial), regional (abdominal, thoracic, and cervical), and layer (muscle and mucosa) variations of the mechanical properties. A structure-based constitutive model, which took the architectures of the tissue’s microstructures into account, was applied to describe the mechanical behavior of the esophagus. Results showed that the constitutive model successfully described the mechanical behavior and provided robust estimates of the material parameters. In conclusion, the model was demonstrated to be a good descriptor of the mechanical properties of the esophagus and it was able to facilitate the directional, layer, and regional comparisons of the mechanical properties in terms of the associated material parameters.


Author(s):  
M. Carraturo ◽  
G. Alaimo ◽  
S. Marconi ◽  
E. Negrello ◽  
E. Sgambitterra ◽  
...  

AbstractAdditive manufacturing (AM), and in particular selective laser melting (SLM) technology, allows to produce structural components made of lattice structures. These kinds of structures have received a lot of research attention over recent years due to their capacity to generate easy-to-manufacture and lightweight components with enhanced mechanical properties. Despite a large amount of work available in the literature, the prediction of the mechanical behavior of lattice structures is still an open issue for researchers. Numerical simulations can help to better understand the mechanical behavior of such a kind of structure without undergoing long and expensive experimental campaigns. In this work, we compare numerical and experimental results of a uniaxial tensile test for stainless steel 316L octet-truss lattice specimen. Numerical simulations are based on both the nominal as-designed geometry and the as-build geometry obtained through the analysis of µ-CT images. We find that the use of the as-build geometry is fundamental for an accurate prediction of the mechanical behavior of lattice structures.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4585
Author(s):  
Marian Bulla ◽  
Stefan Kolling ◽  
Elham Sahraei

The present study is focused on the development of a material model where the orthotropic-visco-elastic and orthotropic-visco-plastic mechanical behavior of a polymeric material is considered. The increasing need to reduce the climate-damaging exhaust gases in the automotive industry leads to an increasing usage of electric powered drive systems using Lithium-ion (Li-ion) batteries. For the safety and crashworthiness investigations, a deeper understanding of the mechanical behavior under high and dynamic loads is needed. In order to prevent internal short circuits and thermal runaways within a Li-ion battery, the separator plays a crucial role. Based on results of material tests, a novel material model for finite element analysis (FEA) is developed using the explicit solver Altair Radioss. Based on this model, the visco-elastic-orthotropic, as well as the visco-plastic-orthotropic, behavior until failure can be modeled. Finally, a FE simulation model of the separator material is performed, using the results of different tensile tests conducted at three different velocities, 0.1 mm·s−1, 1.0 mm·s−1 and 10.0 mm·s−1 and different orientations of the specimen. The purpose is to predict the anisotropic, rate-dependent stiffness behavior of separator materials in order to improve FE simulations of the mechanical behavior of batteries and therefore reduce the development time of electrically powered vehicles and consumer goods. The present novel material model in combination with a well-suited failure criterion, which considers the different states of stress and anisotropic-visco-dependent failure limits, can be applied for crashworthiness FE analysis. The model succeeded in predicting anisotropic, visco-elastic orthotropic and visco-plastic orthotropic stiffness behavior up to failure.


Author(s):  
Micah Hodgins ◽  
Alexander York ◽  
Stefan Seelecke

This work presents the design, fabrication and testing of a comprehensive DEAP test station. The tester is designed to perform tensile tests of planar DEAPs while measuring quantities such as tensile force, stretch, film thickness and voltage/current. The work details the specimen preparation and how the specimen is placed in the clamps. While the assembly process is performed by hand features were built-in to the design of the specimen frame and clamps to enable reliable placement and specimen geometry. Test results of the pure-shear specimen demonstrated good performance of the testing device. Although the electrode surface was rough the thickness stretch was evident during the stretching/actuation of the DEAP actuator.


2014 ◽  
Vol 540 ◽  
pp. 48-51
Author(s):  
Xia Ren ◽  
Lian Xiang Ma

This paper uses the ABAQUS finite element analysis software for modeling and nonlinear analysis of aircraft tires. Paper H44.5 × 16.5-21 aviation tires, The plastic material of the tire subjected to uniaxial stretching to obtain a rubber such as Young's modulus, Poisson's ratio of the material parameters. Uniaxial tensile test tests the tensile properties of the rubber, the use of large-scale numerical calculations and fitting analysis of the experimental data analysis software Matlab, Yeoh model mechanical parameters.


2017 ◽  
Vol 18 (6) ◽  
pp. 522-529 ◽  
Author(s):  
Francesca Di Puccio ◽  
Giuseppe Gallone ◽  
Andrea Baù ◽  
Emanuele M. Calabrò ◽  
Simona Mainardi ◽  
...  

Introduction In a previous paper, the authors investigated the mechanical behavior of several commercial polyurethane peripherally inserted central venous catheters (PICCs) in their ‘brand new’ condition. The present study represents a second step of the research activity and aims to investigate possible modifications of the PICC mechanical response, induced by long-term conservation in in vivo-like conditions, particularly when used to introduce oncologic drugs. Methods Eight 5 Fr single-lumen catheters from as many different vendors, were examined. Several specimens were cut from each of them and kept in a bath at 37°C for 1, 2, 3 and 6 months. Two fluids were used to simulate in vivo-like conditions, i.e. ethanol and Ringer-lactate solutions, the first being chosen in order to reproduce a typical chemical environment of oncologic drugs. The test plan included swelling analyses, uniaxial tensile tests and dynamic mechanical thermal analysis (DMTA). Results and conclusions All tested samples were chemically and mechanically stable in the studied conditions, as no significant weight variation was observed even after six months of immersion in ethanol solution. Uniaxial tensile tests confirmed such a response. For each PICC, very similar curves were obtained from samples tested after different immersion durations in the two fluid solutions, particularly for strains lower than 10%.


Author(s):  
Xiao-Yan Gong ◽  
Alan R. Pelton

Nitinol, an alloy of about 50% Ni and 50% Ti, is a very unique material. At constant temperature above its Austenite finish (Af) temperature, under uniaxial tensile test, the material is highly nonlinear and capable of large deformation to the ultimate strain on the order of 15%. This material behavior, known as superelasticity, along with its excellent biocompatibility and corrosion resistance, makes Nitinol a perfect material candidate for many medical device applications. However, the nonlinear material response also requires a specific material description to perform the stress analysis. The user developed material subroutine from HKS/West makes the simulation of the Nitinol devices possible. This article presents two case studies of the nonlinear finite element analysis using ABAQUS/Standard and the Nitinol UMAT.


2005 ◽  
Vol 297-300 ◽  
pp. 2152-2157 ◽  
Author(s):  
Eun Chae Jeon ◽  
Min Kyung Baik ◽  
Sung Hoon Kim ◽  
Baik Woo Lee ◽  
Dong Il Kwon

A new method [1] to evaluate indentation flow curves using an instrumented indentation test has been applied to many materials for several years. Though the method produces relatively good results compared to uniaxial tensile tests, a few parameters had not been verified by theoretical or numerical methods. In this study, proportional constants of representative strain and representative stress were verified using finite element analysis and proven to be unaffected by the elastic property and strain level. The constants were generally dependent on the plastic property; however, one combination of the constants is independent of all properties. The values of this combination are consistent with early research and produced overlapping indentation flow curves with uniaxial curves.


Sign in / Sign up

Export Citation Format

Share Document