scholarly journals Exploring Manufacturing Process and Degradation Products of Gilt and Painted Leather

2019 ◽  
Vol 9 (15) ◽  
pp. 3016 ◽  
Author(s):  
Morena Iorio ◽  
Valerio Graziani ◽  
Sergio Lins ◽  
Stefano Ridolfi ◽  
Paolo Branchini ◽  
...  

In this work, we studied the manufacturing processes and the conservation state of gilt and painted leather fragments from Palazzo Chigi in Ariccia (Italy) by using different analytical techniques. Leather fragments present a silver leaf superimposed onto leather support. A gold varnish and different painted layers decorate it all. A top-down analytical approach was used to investigate this complex multilayer structure, which adopted techniques with different sampling depths. Organic and inorganic constitutive materials together with related degradation products were studied by time of flight secondary ion mass spectrometry (ToF-SIMS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and macro X-ray fluorescence (MA-XRF). The findings have revealed the presence of different elements and species as calcium and iron in the leather support, which was attributed to the un-hairing process in the leather tanning. Regarding what concerns the silver leaf, where the varnish cracked, silver chlorides, oxides, and sulfides were detected as degradation products of the silver leaf. Proteinaceous compounds were also identified where the silver leaf is unprotected by the varnish. These ion signals reveal a potential use of animal glue on both sides of the silver leaf to promote durable adhesion. In the gold varnish, the surface analysis revealed organic compounds such as resins and oils. In particular, the copresence of linoleic, arachidonic, and lignoceric acid ion signals in the yellow area suggests the use of aloe as a colorant. Lead ions in the same area were detected and attributed to the use of lead as siccative. Blue areas were obtained by using indigo and lead white in addition to an oil binder. This is confirmed by the detection of indigotin, fatty acid, and lead soap ion signals. A copper-based pigment was used to depict the green areas and copper oxalates were identified as its degradation products. Lastly, no significant information about the red colorant was obtained. Colophony is present as a component of the final varnish.

Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 380 ◽  
Author(s):  
Klodian Xhanari ◽  
Matjaž Finšgar

The corrosion inhibition effect of five azole compounds on the corrosion of an AA6082 aluminium alloy in 5 wt.% NaCl solution at 25 and 50 °C was investigated using weight loss and electrochemical measurements. Only 2-mercaptobenzothiazole (MBT) showed a corrosion inhibition effect at both temperatures and was further studied in detail, including with the addition of potassium iodide as a possible intensifier. Surface analysis of the MBT surface layer was performed by means of attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry techniques. The hydrophobicity of the MBT surface layer was also investigated.


Author(s):  
D. M. File ◽  
L. R. Denton ◽  
P. L. Henderson

X-ray microdiffraction is a tool used at NSWC to perform and support failure analyses. Our failure analysis efforts attempt to determine the primary cause(s) of the failure and to recommend corrective action(s) in a timely manner. The analytical techniques used include Secondary Ion Mass Spectrometry (SIMS), Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), and Electron Probe MicroAnalysis (EPMA). The addition of x-ray microdiffraction has provided additional capability which supports the elemental analyses, and has often reduced the analysis time required to identify the failure mode.X-ray microdiffraction can provide the following capabilities: 1) qualitative analyses, 2) quantitative analyses, 3) degree of crystallinity, 4) measurement of residual stress, 5) grain or particle size, 6) texture or preferred orientation, and 7) analysis of small samples (∼10 μm to 20 μm diameter). In addition, these analyses can usually be performed in a few minutes to an hour.X-ray microdiffraction has evolved steadily over the past 15 years.


Author(s):  
K.K. Soni ◽  
D.B. Williams ◽  
J.M. Chabala ◽  
R. Levi-Setti ◽  
D.E. Newbury

In contrast to the inability of x-ray microanalysis to detect Li, secondary ion mass spectrometry (SIMS) generates a very strong Li+ signal. The latter’s potential was recently exploited by Williams et al. in the study of binary Al-Li alloys. The present study of Al-Li-Cu was done using the high resolution scanning ion microprobe (SIM) at the University of Chicago (UC). The UC SIM employs a 40 keV, ∼70 nm diameter Ga+ probe extracted from a liquid Ga source, which is scanned over areas smaller than 160×160 μm2 using a 512×512 raster. During this experiment, the sample was held at 2 × 10-8 torr.In the Al-Li-Cu system, two phases of major importance are T1 and T2, with nominal compositions of Al2LiCu and Al6Li3Cu respectively. In commercial alloys, T1 develops a plate-like structure with a thickness <∼2 nm and is therefore inaccessible to conventional microanalytical techniques. T2 is the equilibrium phase with apparent icosahedral symmetry and its presence is undesirable in industrial alloys.


Langmuir ◽  
2012 ◽  
Vol 28 (47) ◽  
pp. 16306-16317 ◽  
Author(s):  
Yolanda S. Hedberg ◽  
Manuela S. Killian ◽  
Eva Blomberg ◽  
Sannakaisa Virtanen ◽  
Patrik Schmuki ◽  
...  

1996 ◽  
Vol 11 (1) ◽  
pp. 229-235 ◽  
Author(s):  
E. Cattaruzza ◽  
R. Bertoncello ◽  
F. Trivillin ◽  
P. Mazzoldi ◽  
G. Battaglin ◽  
...  

Silica glass was implanted with chromium at the energy of 35 and 160 keV and at fluences varying from 1 × 1016 to 11 × 1016 ions cm−2. In a set of chromium-implanted samples significant amounts of carbon were detected. Samples were characterized by x-ray photoelectron spectroscopy, x-ray-excited Auger electron spectroscopy, secondary ion mass spectrometry, and Rutherford backscattering spectrometry. Chromium silicide and chromium oxide compounds were observed; the presence of carbon in the implanted layers induces the further formation of chromium carbide species. Thermodynamic considerations applied to the investigated systems supply indications in agreement with the experimental evidences.


Author(s):  
Cole T. Edwards ◽  
Clive M. Jones ◽  
Page C. Quinton ◽  
David A. Fike

The oxygen isotopic compositions (δ18O) of minimally altered phosphate minerals and fossils, such as conodont elements, are used as a proxy for past ocean temperature. Phosphate is thermally stable under low to moderate burial conditions and is ideal for reconstructing seawater temperatures because the P-O bonds are highly resistant to isotopic exchange during diagenesis. Traditional bulk methods used to measure conodont δ18O include multiple conodont elements, which can reflect different environments and potentially yield an aggregate δ18O value derived from a mixture of different water masses. In situ spot analyses of individual elements using micro-analytical techniques, such as secondary ion mass spectrometry (SIMS), can address these issues. Here we present 108 new δ18O values using SIMS from conodont apatite collected from four Lower to Upper Ordovician stratigraphic successions from North America (Nevada, Oklahoma, and the Cincinnati Arch region of Kentucky and Indiana, USA). The available elements measured had a range of thermal alteration regimes that are categorized based on their conodont alteration index (CAI) as either low (CAI = 1−2) or high (CAI = 3−4). Though individual spot analyses of the same element yield δ18O values that vary by several per mil (‰), most form a normal distribution around a mean value. Isotopic variability of individual spots can be minimized by avoiding surficial heterogeneities like cracks, pits, or near the edge of the element and the precision can be improved with multiple (≥4) spot analyses of the same element. Mean δ18O values from multiple conodonts from the same bed range between 0.0 and 4.3‰ (median 1.0‰), regardless of low or high CAI values. Oxygen isotopic values measured using SIMS in this study reproduce values similar to published trends, namely, δ18O values increase during the Early−Middle Ordovician and plateau by the mid Darriwilian (late Middle Ordovician). Twenty-two of the measured conodonts were from ten sampled beds that had been previously measured using bulk analysis. SIMS-based δ18O values from these samples are more positive by an average of 1.7‰ compared to bulk values, consistent with observations by others who attribute the shift to carbonate- and hydroxyl-related SIMS matrix effects. This offset has implications for paleo-temperature model estimates, which indicate that a 4 °C temperature change corresponds to a 1‰ shift in δ18O (‰). Although this uncertainty precludes precise paleo-temperature reconstructions by SIMS, it is valuable for identifying spatial and stratigraphic trends in temperature that might not have been previously possible with bulk approaches.


Sign in / Sign up

Export Citation Format

Share Document