scholarly journals On the Representativeness of UTOPIA Land Surface Model for Creating a Database of Surface Layer, Vegetation and Soil Variables in Piedmont Vineyards, Italy

2019 ◽  
Vol 9 (18) ◽  
pp. 3880 ◽  
Author(s):  
Claudio Cassardo ◽  
Valentina Andreoli

The main aim of the paper is to show how, and how many, simulations carried out using the Land Surface Model UTOPIA (University of TOrino model of land Process Interaction with Atmosphere) are representative of the micro-meteorological conditions and exchange processes at the atmosphere/biosphere interface, with a particular focus on heat and hydrologic transfers, over an area of the Piemonte (Piedmont) region, NW Italy, which is characterized by the presence of many vineyards. Another equally important aim is to understand how much the quality of the simulation outputs was influenced by the input data, whose measurements are often unavailable for long periods over country areas at an hourly basis. Three types of forcing data were used: observations from an experimental campaign carried out during the 2008, 2009, and 2010 vegetative seasons in three vineyards, and values extracted from the freely available Global Land Data Assimilation System (GLDAS, versions 2.0 and 2.1). Since GLDAS also contains the outputs of the simulations performed using the Land Surface Model NOAH, an additional intercomparison between the two models, UTOPIA and NOAH, both driven by the same GLDAS datasets, was performed. The intercomparisons were performed on the following micro-meteorological variables: net radiation, sensible and latent turbulent heat fluxes, and temperature and humidity of soil. The results of this study indicate that the methodology of employing land surface models driven by a gridded database to evaluate variables of micro-meteorological and agronomic interest in the absence of observations is suitable and gives satisfactory results, with uncertainties comparable to measurement errors, thus, allowing us to also evaluate some time trends. The comparison between GLDAS2.0 and GLDAS2.1 indicates that the latter generally produces simulation outputs more similar to the observations than the former, using both UTOPIA and NOAH models.

2016 ◽  
Author(s):  
Vanessa Haverd ◽  
Matthias Cuntz ◽  
Lars P. Nieradzik ◽  
Ian N. Harman

Abstract. CABLE is a global land surface model, which has been used extensively in offline and coupled simulations. While CABLE performs well in comparison with other land surface models, results are impacted by decoupling of transpiration and photosynthesis fluxes under drying soil conditions, often leading to implausibly high water use efficiencies. Here we present a solution to this problem, ensuring that modeled transpiration is always consistent with modeled photosynthesis, while introducing a parsimonious single-parameter drought response function which is coupled to root water uptake. We further improve CABLE’s simulation of coupled soil-canopy processes by introducing an alternative hydrology model with a physically accurate representation of coupled energy and water fluxes at the soil/air interface, including a more realistic formulation of transfer under atmospherically stable conditions within the canopy and in the presence of leaf litter. The effects of these model developments are assessed using data from 18 stations from the global Eddy covariance flux network FLUXNET, selected to span a large climatic range. Marked improvements are demonstrated, with root-mean-squared errors for monthly latent heat fluxes and water use efficiencies being reduced by 40 %. Results highlight the important roles of deep soil moisture in mediating drought response and litter in dampening soil evaporation.


2014 ◽  
Vol 18 (5) ◽  
pp. 1761-1783 ◽  
Author(s):  
O. Branch ◽  
K. Warrach-Sagi ◽  
V. Wulfmeyer ◽  
S. Cohen

Abstract. A 10 × 10 km irrigated biomass plantation was simulated in an arid region of Israel to simulate diurnal energy balances during the summer of 2012 (JJA). The goal is to examine daytime horizontal flux gradients between plantation and desert. Simulations were carried out within the coupled WRF-NOAH atmosphere/land surface model. MODIS land surface data was adjusted by prescribing tailored land surface and soil/plant parameters, and by adding a controllable sub-surface irrigation scheme to NOAH. Two model cases studies were compared – Impact and Control. Impact simulates the irrigated plantation. Control simulates the existing land surface, where the predominant land surface is bare desert soil. Central to the study is parameter validation against land surface observations from a desert site and from a 400 ha Simmondsia chinensis (jojoba) plantation. Control was validated with desert observations, and Impact with Jojoba observations. Model evapotranspiration was validated with two Penman–Monteith estimates based on the observations. Control simulates daytime desert conditions with a maximum deviation for surface 2 m air temperatures (T2) of 0.2 °C, vapour pressure deficit (VPD) of 0.25 hPa, wind speed (U) of 0.5 m s−1, surface radiation (Rn) of 25 W m−2, soil heat flux (G) of 30 W m−2 and 5 cm soil temperatures (ST5) of 1.5 °C. Impact simulates irrigated vegetation conditions with a maximum deviation for T2 of 1–1.5 °C, VPD of 0.5 hPa, U of 0.5 m s−1, Rn of 50 W m−5, G of 40 W m−2 and ST5 of 2 °C. Latent heat curves in Impact correspond closely with Penman–Monteith estimates, and magnitudes of 160 W m−2 over the plantation are usual. Sensible heat fluxes, are around 450 W m−2 and are at least 100–110 W m−2 higher than the surrounding desert. This surplus is driven by reduced albedo and high surface resistance, and demonstrates that high evaporation rates may not occur over Jojoba if irrigation is optimized. Furthermore, increased daytime T2 over plantations highlight the need for hourly as well as daily mean statistics. Daily mean statistics alone may imply an overall cooling effect due to surplus nocturnal cooling, when in fact a daytime warming effect is observed.


2021 ◽  
Author(s):  
Mengyuan Mu ◽  
Martin De Kauwe ◽  
Anna Ukkola ◽  
Andy Pitman ◽  
Teresa Gimeno ◽  
...  

<p>Land surface models underpin coupled climate model projections of droughts and heatwaves. However, the lack of simultaneous observations of individual components of evapotranspiration, concurrent with root-zone soil moisture, has limited previous model evaluations. Here, we use a comprehensive set of observations from a water-limited site in southeastern Australia including both evapotranspiration and soil moisture to a depth of 4.5 m to evaluate the Community Atmosphere-Biosphere Land Exchange (CABLE) land surface model. We demonstrate that alternative process representations within CABLE had the capacity to improve simulated evapotranspiration, but not necessarily soil moisture dynamics - highlighting problems of model evaluations against water fluxes alone. Our best simulation was achieved by resolving a soil evaporation bias; a more realistic initialisation of the groundwater aquifer state; higher vertical soil resolution informed by observed soil properties; and further calibrating soil hydraulic conductivity. Despite these improvements, the role of the empirical soil moisture stress function in influencing the simulated water fluxes remained important: using a site calibrated function reduced the soil water stress on plants by 36 % during drought and 23 % at other times. These changes in CABLE not only improve the seasonal cycle of evapotranspiration, but also affect the latent and sensible heat fluxes during droughts and heatwaves. The range of parameterisations tested led to differences of ~150 W m<sup>-2</sup> in the simulated latent heat flux during a heatwave, implying a strong impact of parameterisations on the capacity for evaporative cooling and feedbacks to the boundary layer (when coupled). Overall, our results highlight the opportunity to advance the capability of land surface models to capture water cycle processes, particularly during meteorological extremes, when sufficient observations of both evapotranspiration fluxes and soil moisture profiles are available.</p>


2018 ◽  
Vol 22 (7) ◽  
pp. 3863-3882 ◽  
Author(s):  
Fuxing Wang ◽  
Jan Polcher ◽  
Philippe Peylin ◽  
Vladislav Bastrikov

Abstract. River discharge plays an important role in earth's water cycle, but it is difficult to estimate due to un-gauged rivers, human activities and measurement errors. One approach is based on the observed flux and a simple annual water balance model (ignoring human processes) for un-gauged rivers, but it only provides annual mean values which is insufficient for oceanic modelings. Another way is by forcing a land surface model (LSM) with atmospheric conditions. It provides daily values but with uncertainties associated with the models. We use data assimilation techniques by merging the modeled river discharges by the ORCHIDEE (without human processes currently) LSM and the observations from the Global Runoff Data Centre (GRDC) to obtain optimized discharges over the entire basin. The “model systematic errors” and “human impacts” (dam operation, irrigation, etc.) are taken into account by an optimization parameter x (with annual variation), which is applied to correct model intermediate variable runoff and drainage over each sub-watershed. The method is illustrated over the Iberian Peninsula with 27 GRDC stations over the period 1979–1989. ORCHIDEE represents a realistic discharge over the north of the Iberian Peninsula with small model systematic errors, while the model overestimates discharges by 30–150 % over the south and northeast regions where the blue water footprint is large. The normalized bias has been significantly reduced to less than 30 % after assimilation, and the assimilation result is not sensitive to assimilation strategies. This method also corrects the discharge bias for the basins without observations assimilated by extrapolating the correction from adjacent basins. The “correction” increases the interannual variability in river discharge because of the fluctuation of water usage. The E (P−E) of GLEAM (Global Land Evaporation Amsterdam Model, v3.1a) is lower (higher) than the bias-corrected value, which could be due to the different P forcing and probably the missing processes in the GLEAM model.


2010 ◽  
Vol 9 (4) ◽  
pp. 984-1001 ◽  
Author(s):  
Jörg Schwinger ◽  
Stefan J. Kollet ◽  
Charlotte M. Hoppe ◽  
Hendrik Elbern

2014 ◽  
Vol 15 (3) ◽  
pp. 921-937 ◽  
Author(s):  
Donghai Zheng ◽  
Rogier van der Velde ◽  
Zhongbo Su ◽  
Martijn J. Booij ◽  
Arjen Y. Hoekstra ◽  
...  

ABSTRACT Current land surface models still have difficulties with producing reliable surface heat fluxes and skin temperature (Tsfc) estimates for high-altitude regions, which may be addressed via adequate parameterization of the roughness lengths for momentum (z0m) and heat (z0h) transfer. In this study, the performance of various z0h and z0m schemes developed for the Noah land surface model is assessed for a high-altitude site (3430 m) on the northeastern part of the Tibetan Plateau. Based on the in situ surface heat fluxes and profile measurements of wind and temperature, monthly variations of z0m and diurnal variations of z0h are derived through application of the Monin–Obukhov similarity theory. These derived values together with the measured heat fluxes are utilized to assess the performance of those z0m and z0h schemes for different seasons. The analyses show that the z0m dynamics are related to vegetation dynamics and soil water freeze–thaw state, which are reproduced satisfactorily with current z0m schemes. Further, it is demonstrated that the heat flux simulations are very sensitive to the diurnal variations of z0h. The newly developed z0h schemes all capture, at least over the sparse vegetated surfaces during the winter season, the observed diurnal variability much better than the original one. It should, however, be noted that for the dense vegetated surfaces during the spring and monsoon seasons, not all newly developed schemes perform consistently better than the original one. With the most promising schemes, the Noah simulated sensible heat flux, latent heat flux, Tsfc, and soil temperature improved for the monsoon season by about 29%, 79%, 75%, and 81%, respectively. In addition, the impact of Tsfc calculation and energy balance closure associated with measurement uncertainties on the above findings are discussed, and the selection of the appropriate z0h scheme for applications is addressed.


2020 ◽  
Author(s):  
Anthony Bernus ◽  
Catherine Ottle ◽  
Nina Raoult

<p>Lakes play a major role on local climate and boundary layer stratification. At global scale, they have been shown to have an impact on the energy budget, (see for example Le Moigne et al., 2016 or Bonan, 1995 ) . To represent the energy budget of lakes at a global scale, the FLake (Mironov et al, 2008) lake model has been coupled to the ORCHIDEE land surface model - the continental part of the IPSL earth system model. By including Flake in ORCHIDEE, we aim to improve the representation of land surface temperature and heat fluxes. Using the standard CMIP6 configuration of ORCHIDEE,  two 40-year simulations were generated (one coupled with FLake and one without) using the CRUJRA meteorological forcing data at a spatial resolution of 0.5°. We compare land surface temperatures and heat fluxes from the two ORCHIDEE simulations and assess the impacts of lakes on surface energy budgets. MODIS satellite land surface temperature products will be used to validate the simulations. We expect a better fit between the simulated land surface temperature and the MODIS data when the FLake configuration is used. The preliminary results of the comparison will be presented.</p>


2004 ◽  
Vol 43 (10) ◽  
pp. 1477-1497 ◽  
Author(s):  
Youlong Xia ◽  
Mrinal K. Sen ◽  
Charles S. Jackson ◽  
Paul L. Stoffa

Abstract This study evaluates the ability of Bayesian stochastic inversion (BSI) and multicriteria (MC) methods to search for the optimal parameter sets of the Chameleon Surface Model (CHASM) using prescribed forcing to simulate observed sensible and latent heat fluxes from seven measurement sites representative of six biomes including temperate coniferous forests, tropical forests, temperate and tropical grasslands, temperate crops, and semiarid grasslands. Calibration results with the BSI and MC show that estimated optimal values are very similar for the important parameters that are specific to the CHASM model. The model simulations based on estimated optimal parameter sets perform much better than the default parameter sets. Cross-validations for two tropical forest sites show that the calibrated parameters for one site can be transferred to another site within the same biome. The uncertainties of optimal parameters are obtained through BSI, which estimates a multidimensional posterior probability density function (PPD). Marginal PPD analyses show that nonoptimal choices of stomatal resistance would contribute most to model simulation errors at all sites, followed by ground and vegetation roughness length at six of seven sites. The impact of initial root-zone soil moisture and nonmosaic approach on estimation of optimal parameters and their uncertainties is discussed.


2014 ◽  
Vol 7 (5) ◽  
pp. 6773-6809
Author(s):  
T. Osborne ◽  
J. Gornall ◽  
J. Hooker ◽  
K. Williams ◽  
A. Wiltshire ◽  
...  

Abstract. Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soy bean, maize and rice is presented. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soy bean at the global level, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index and canopy height better than in standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an earth system and crop yield model perspective is encouraging however, more effort is needed to develop the parameterisation of the model for specific applications. Key future model developments identified include the specification of the yield gap to enable better representation of the spatial variability in yield.


Sign in / Sign up

Export Citation Format

Share Document