scholarly journals Validating the Comparison Framework for the Finite Dimensions Model of Concentric Ring Electrodes Using Human Electrocardiogram Data

2019 ◽  
Vol 9 (20) ◽  
pp. 4279
Author(s):  
Oleksandr Makeyev ◽  
Mark Musngi ◽  
Larry Moore ◽  
Yiyao Ye-Lin ◽  
Gema Prats-Boluda ◽  
...  

While progress has been made in design optimization of concentric ring electrodes maximizing the accuracy of the surface Laplacian estimation, it was based exclusively on the negligible dimensions model of the electrode. Recent proof of concept of the new finite dimensions model that adds the radius of the central disc and the widths of concentric rings to the previously included number of rings and inter-ring distances provides an opportunity for more comprehensive design optimization. In this study, the aforementioned proof of concept was developed into a framework allowing direct comparison of any two concentric ring electrodes of the same size and with the same number of rings. The proposed framework is illustrated on constant and linearly increasing inter-ring distances tripolar concentric ring electrode configurations and validated on electrocardiograms from 20 human volunteers. In particular, ratios of truncation term coefficients between the two electrode configurations were used to demonstrate the similarity between the negligible and the finite dimension models analytically (p = 0.077). Laplacian estimates based on the two models were calculated on electrocardiogram data for emulation of linearly increasing inter-ring distances tripolar concentric ring electrode. The difference between the estimates was not statistically significant (p >> 0.05) which is consistent with the analytic result.

2020 ◽  
Vol 2 (1) ◽  
pp. 56
Author(s):  
Oleksandr Makeyev

Optimization performed in this study is based on the finite dimensions model of the concentric ring electrode as opposed to the negligible dimensions model widely used in the past. This makes the optimization problem comprehensive since all of the electrode parameters, including, for the first time, the radius of the central disc and individual widths of concentric rings, are optimized simultaneously. The optimization criterion used is maximizing the accuracy of the surface Laplacian estimation since the ability to estimate the Laplacian at each electrode constitutes the primary biomedical significance of concentric ring electrodes. Even though the obtained results and derived principles defining optimal electrode configurations are illustrated on tripolar (two concentric rings) electrodes, they were also confirmed for quadripolar (three rings) and pentapolar (four rings) electrodes and are likely to continue to hold for any higher number of concentric rings. For tripolar concentric ring electrodes, the optimal configuration was compared to previously proposed, linearly increasing inter-ring distances and constant inter-ring distances in configurations of the same size and based on the same finite dimensions model of the electrode. The obtained results suggest that previously proposed configurations correspond to almost two-fold and more than three-fold increases in Laplacian estimation error, respectively, compared to the optimal configuration proposed in this study.


2021 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Oleksandr Makeyev ◽  
Alana Lee ◽  
Ashton Begay

Concentric ring electrodes are noninvasive and wearable sensors for electrophysiological measurement capable of estimating the surface Laplacian (second spatial derivative of surface potential) at each electrode. Previously, progress was made toward optimization of inter-ring distances (distances between the recording surfaces of a concentric ring electrode), maximizing the accuracy of the surface Laplacian estimate based on the negligible dimensions model of the electrode. However, this progress was limited to tripolar (number of concentric rings n equal to 2) and quadripolar (n = 3) electrode configurations only. In this study, the inter-ring distances optimization problem is solved for pentapolar (n = 4) and sextopolar (n = 5) concentric ring electrode configurations using a wide range of truncation error percentiles ranging from 1st to 25th. Obtained results also suggest consistency between all the considered concentric ring electrode configurations corresponding to n ranging from 2 to 5 that may allow estimation of optimal ranges of inter-ring distances for electrode configurations with n ≥ 6. Therefore, this study may inform future concentric ring electrode design for n ≥ 4 which is important since the accuracy of surface Laplacian estimation has been shown to increase with an increase in n.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3983
Author(s):  
Ozren Gamulin ◽  
Marko Škrabić ◽  
Kristina Serec ◽  
Matej Par ◽  
Marija Baković ◽  
...  

Gender determination of the human remains can be very challenging, especially in the case of incomplete ones. Herein, we report a proof-of-concept experiment where the possibility of gender recognition using Raman spectroscopy of teeth is investigated. Raman spectra were recorded from male and female molars and premolars on two distinct sites, tooth apex and anatomical neck. Recorded spectra were sorted into suitable datasets and initially analyzed with principal component analysis, which showed a distinction between spectra of male and female teeth. Then, reduced datasets with scores of the first 20 principal components were formed and two classification algorithms, support vector machine and artificial neural networks, were applied to form classification models for gender recognition. The obtained results showed that gender recognition with Raman spectra of teeth is possible but strongly depends both on the tooth type and spectrum recording site. The difference in classification accuracy between different tooth types and recording sites are discussed in terms of the molecular structure difference caused by the influence of masticatory loading or gender-dependent life events.


1827 ◽  
Vol 117 ◽  
pp. 286-296 ◽  

In the Philosophical Transactions for 1826, Part II. Mr. Herschel has given a detailed account of observations, which were made in the month of July, 1825, for the purpose of ascertaining the difference of the meridians of the Royal Observatories of Greenwich and Paris, with a computation of these observations, from which the most probable value of the difference of longitude appears to be 9 m 21 s. 6. But I have perceived that in the copy of the observations delivered to him from the Royal Observatory of Greenwich, an error of one second has been committed; as the true sidereal time of the observation made there on 21st July, ought to be 17 h 38 m 57·12 in place of 17 h 38 m 56 s. 10, set down in the Table p. 104, which he informs me was computed at the Observatory, and officially communicated to him from the Astronomer Royal. This error seems to have had its origin in the little Table at the bottom of page 103; for, on subtracting the error of the clock, 47 s. 37, from the time 18 h 8 m 30 s. 40, the true sidereal time is 18 h 7 m 43 s. 03, instead of 18 h 7 m 42 s. 03, there given. The error in the result of that day’s observations, arising from this cause, has been partly compensated by a mistake of three tenths of a second, which has occurred in calculating the combined observations of the same day, the gain of mean on sidereal time being stated to be — 4 s. 54 (pp. 120 and 122), in place of — 4 s. 24. On checking the other observations, a few trifling alterations appear to be necessary upon the Greenwich Table of sidereal time, from the data given along with it. These seem to be occasioned by different methods of calculation, and indeed are hardly worthy of notice. The French astronomers not having given the data on which the calculations of the sidereal times at Paris are founded, they are assumed to be correct.


2021 ◽  
Author(s):  
V.E. Dmitriyev ◽  
D.V. Popov ◽  
V.A. Shakhnov

This article deals with the digital processing of a matrix radar image. The information received from the radar scanner needs to be transformed to enable visual perception. The article describes the main methods of digital processing of matrix data, presents the images transformed by them. The aim of the article was the development of a radar data processing algorithm that identifies the contours and edges of examined objects. The authors propose an algorithm for isolating the geometric structure of the scanned area. The difference between the processing method and the known analogues is based on the nature of the change in the values of the array being processed and consists in the double operation of extracting the gradient of the distribution of values. The software implementation of the algorithm is made in C++ using methods from an open library of computer vision. The efficiency of the algorithm was estimated based on comparison with the algorithms for determining edges based on linear filtering and neural networks. The results of the work can be used to create software for mobile short-range radar devices. Imaging from object boundaries and their edges provides spatial perception of the image by the operator, and free areas are available for rendering additional information. This solution allows you to combine scanning devices and thereby increase the information value of the result.


2012 ◽  
Vol 35 (1) ◽  
pp. 27-70
Author(s):  
Björn Lundquist

It is well known that the aktionsart/lexical aspect of a predicate influences the temporal interpretation and the aspectual marking of a sentence, and also that languages differ with respect to which aktionsart properties feed into the tense-aspect system (see e.g. Bohnemeyer & Swift 2004). In this paper, I try to pin down the exact locus of variation between languages where the stative–dynamic distinction is mainly grammaticized (e.g. English, Saamáka) and languages where the telic–atelic distinction is mainly grammaticized (e.g. Swedish, Chinese and Russian). The focus will be on the differences between English and Swedish, and I will argue that these two languages crucially differ in the nature of Assertion Time (or Topic/Reference Time, Klein 1994, Demirdache & Uribe-Etxebarria 2000): whereas the assertion time in English is always punctual in imperfective contexts, assertion time in Swedish can extend to include minimal stages of events. The Assertion Time is introduced by a (viewpoint) aspect head that is present in both languages, but not phonologically realized. The difference can thus not be ascribed to the presence or absence of overt tense, aspect or verb morphology, or to a special tense value, as argued in one way or other by, for example, Giorgi & Pianesi (1997), Demirdache & Uribe-Etxebarria (2000) and Ramchand (2012). Once this factor (i.e. the nature of Assertion Time) has been isolated, it becomes evident that all verbs in English and Swedish, regardless of telicity or dynamicity, can be assigned either a perfective or an imperfective value. Moreover, I will argue that the English progressive–non-progressive (or ‘simple’) distinction is independent of viewpoint aspect (i.e. the perfective– imperfective distinction) made in, for example, the Romance languages.


1761 ◽  
Vol 52 ◽  
pp. 182-183

Having measured the diameter of Venus, on the sun, three times, with the object-glass micrometer, the mean was found to be 58 seconds; and but 6/10 of a second, the difference of the extremes.


1950 ◽  
Vol 40 (3) ◽  
pp. 199-226 ◽  
Author(s):  
E. M. Crook ◽  
D. J. Watson

Continuous records of the temperature of potatoes stored in clamps were made in 1942–3 (one clamp) and in 1943–4 (three clamps). In the first year, the temperatures at various positions in the clamp coverings were also recorded.The temperature at the middle of the potato heap showed a drift with time similar to that of mean air temperature. Deviations of mean air temperature from smooth trend, lasting for about a week, had no effect on the temperature of the potatoes; longerperiod deviations were reflected in the temperature of the potatoes after a lag of about a week. The difference in weekly mean temperature between potatoes and external air averaged about 1–5° C. in 1943–4. In 1942–3 it was greater, increasing to over 20° C. in April, because bacterial rotting of the potatoes following blight infection increased the rate of heat production and caused the clamp to collapse at the end of April.


Sign in / Sign up

Export Citation Format

Share Document