scholarly journals An analysis of energy detector based on improved approximations of the chi-square distributions

Author(s):  
Felipe G. M. Elias ◽  
Evelio M. G. Fernández

AbstractClosed-form expressions for the detection probability, the false alarm probability and the energy detector constant threshold are derived using approximations of the central chi-square and non-central chi-square distributions. The approximations used show closer proximity to the original functions when compared to the expressions used in the literature. The novel expressions allow gains up to 6% and 16% in terms of measured false alarm and miss-detection probability, respectively, if compared to the Central Limit Theorem approach. The throughput of cognitive network is also enhanced when these novel expressions are implemented, providing gains up to 9%. New equations are also presented that minimize the total error rate to obtain the detection threshold and the optimal number of samples. The analytical results match the results of the simulation for a wide range of SNR values.

2019 ◽  
Vol 9 (21) ◽  
pp. 4634 ◽  
Author(s):  
Hai Huang ◽  
Jia Zhu ◽  
Junsheng Mu

Sensing strategy directly influences the sensing accuracy of a spectrum sensing scheme. As a result, the optimization of a sensing strategy appears to be of great significance for accuracy improvement in spectrum sensing. Motivated by this, a novel sensing strategy is proposed in this paper, where an improved tradeoff among detection probability, false-alarm probability and available throughput is obtained based on the energy detector. We provide the optimal sensing performance and exhibit its superiority in theory compared with the classical scheme. Finally, simulations validate the conclusions drawn in this paper.


Author(s):  
Ajay Singh ◽  
Manav R. Bhatnagar ◽  
Ranjan K. Mallik

A dual-hop cooperative spectrum sensing approach is studied in detail, where each cooperative Cognitive Radio (CR) makes a binary decision based on the local observation, by using an improved energy detector, and then forwards it to a common receiver. At the common receiver, all binary decisions are fused together. The authors provide an analytical framework for the analysis of performance of the improved energy detector-based cooperative CR network. They discuss how to choose an optimal number of cooperating CRs in order to minimize the total error rate by using an improved energy detector over perfect and imperfect reporting channels. Further, the error performance of dual-hop cooperative spectrum sensing with multiple antennae-based CR is discussed. The authors also exploit the multi-hop cooperative communication approach in an improved energy detector-based CR network for increasing the coverage area of the secondary communication systems with reduced power consumption.


2014 ◽  
Vol 1044-1045 ◽  
pp. 818-824
Author(s):  
Bo Fan Yang ◽  
Rui Wang ◽  
Gang Wang ◽  
Li Zhao

Aiming at signal detection of radar target, concerning about on the basis of the influence of SNR on detection probability when false alarm probability is given based on N-P criterion, a kind of multi-sensor fusion detection based on SNR is put forward. It can improve system’s detection probability under the condition of required false alarm probability in the detection of low SNR signal. The simulation results show that the detection performance is significantly increased, no matter fusion detection system is composed of same sensors working in the same working point or different sensors.


Author(s):  
Puneeth K M ◽  
Poornima M S

The basic idea of 5th generation New Radio (5GNR) is to have very high data rate and to make it work efficiently for all Internet of Things (IOT) applications like healthcare, Automotive, Industrial etc. applications. This paper provides the Orthogonal Frequency Division Multiple Access (OFDM) baseband signal generation and detection method for Physical Random-Access Channel (PRACH). The proposed model provides four scenarios of preamble detection i.e., Preamble detection probability, Miss-detection probability, False alarm probability and null. We achieved the target of 99% of Probability of Detection and less than 0.1% of False-alarm probability at certain SNR as specified according to 3gpp standard requirements when tested in Additive White Gaussian Noise (AWGN) channel and Extended Typical Urban (ETU) channel.


2020 ◽  
pp. 27-38
Author(s):  
V. A. Gorodnichev ◽  
M. L. Belov ◽  
V. V. Shvygina ◽  
D. S. Sitnikov

Today the monitoring of forests is one of the actual tasks of environmental control. The most important problems of monitoring of forest resources are mapping of forests, determining species and age composition of forests and analysis of sanitary condition of forests.An effective method of monitoring the state of vegetation (including forests) is optical aerospace sensing. The methods of optical sensing of vegetation cover are currently passive, for the most part.However, passive methods are available to use for daylight only. Therefore, laser methods which can be used in wide range of light and atmospheric conditions are of interest.In this article there was carried out the comparative analysis and selection of the most effective sensing wavelengths in atmospheric transparency windows for two-waves laser method for determining forest areas with prevalence of coniferous or deciduous wood species.As an information index (coniferous or deciduous wood species) in this article the ratio of reflection coefficients of parcels of forest at two wavelengths was used. Pairs of wavelengths 1,54μ and 0,532μ; 1,54μ and 0,355μ are the most relevant for detecting forest areas with prevalence of coniferous or deciduous wood species.For quantitative assessment the efficiency of the laser method mathematical modeling was carried out. The results of mathematical modeling show that that the wavelengths of 0.532μm and 1.54μm are the most effective and provide scanning with probability of correct detecting ~ 0.99 and with false-alarm probability ~ 0.04.However, in terms of eye safety it’s better to choose wavelengths of 0.355μm and 1.54μm, because they allow to solve satisfactory the problem of determining forest areas with prevalence of coniferous or deciduous wood species with probability of correct detecting ~ 0.9 and with false-alarm probability ~ 0.14.


2021 ◽  
pp. 95-107
Author(s):  
A.V. Smolyakov ◽  
A.S. Podstrigaev

Multichannel digital receivers based on the signal processing technology involving undersampling are used for the instantaneous wideband analysis of the electronic environment. One of the most common algorithms for measuring input signal’s carrier frequency in such receivers includes unfolding of the signal’s spectrums from the first Nyquist zone of all receiver’s channels to the single frequency axis and searching for the frequency where the spectrum components from all of the receiver’s channels coincided. Performance of the signal detector, which uses this algorithm in its operation, was not studied. In the absence of a mathematical description of such a detector, evaluating the digital undersampling receiver’s sensitivity becomes possible only in the late stages of prototyping when it can be done through experimental study. Additionally, it is impossible to set a detection threshold in the receiver according to the Neyman-Pearson criterion, which hardens building constant false alarm rate (CFAR) systems based on this type's receivers. This paper aims to develop the mathematical description of the digital undersampling receiver's detector and then, using this model, to get expressions and computer models to evaluate the characteristics of such receiver even in early stages of its development. This paper's main result is the developed mathematical tools necessary to evaluate the multichannel digital undersampling receiver’s signal detector performance. It is shown that the false alarm probability in such a detector does not exceed some value no matter how small the detection threshold is. The expression for evaluating the maximum false alarm probability by the receiver’s parameters is also presented in the paper alongside the true positive rate plots as a function of signal-to-noise ratio for the three-channel receiver. These results can be used in evaluating the digital undersampling receiver’s characteristics in the early stages of its development. It allows one to choose optimal values of the receiver’s parameters which are hard and expensive to change after prototyping is done, and there is an opportunity to evaluate the receiver’s characteristics experimentally. Moreover, the obtained mathematical expressions make it possible to set the receiver's detection threshold according to the Neyman-Pearson criterion and build on its base a CFAR-systems widely used for wideband signal analysis.


Author(s):  
Srijibendu Bagchi

Cognitive radio is now acknowledged as a potential solution to meet the spectrum scarcity problem in radio frequency range. To achieve this objective proper identification of vacant frequency band is necessary. In this article a detection methodology based on cepstrum estimation has been proposed that can be done through power spectral density estimation of the received signal. The detection has been studied under different channel fading conditions along with Gaussian noise. Two figures of merit are considered here; false alarm probability and detection probability. For a specific false alarm probability, the detection probabilities are calculated for different sample size and it has been established through numerical results that the proposed detector performs quite well in different channel impairments.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Daniele Borio ◽  
Emanuele Angiuli ◽  
Raimondo Giuliani ◽  
Gianmarco Baldini

Spectrum Sensing (SS) is an important function in Cognitive Radio (CR) to detect primary users. The design of SS algorithms is one of the most challenging tasks in CR and requires innovative hardware and software solutions to enhance detection probability and minimize low false alarm probability. Although several SS algorithms have been developed in the specialized literature, limited work has been done to practically demonstrate the feasibility of this function on platforms with significant computational and hardware constraints. In this paper, SS is demonstrated using a low cost TV tuner as agile front-end for sensing a large portion of the Ultra-High Frequency (UHF) spectrum. The problems encountered and the limitations imposed by the front-end are analysed along with the solutions adopted. Finally, the spectrum sensor developed is implemented on an Android device and SS implementation is demonstrated using a smartphone.


2013 ◽  
Vol 765-767 ◽  
pp. 2305-2308
Author(s):  
Shou Tao Lv ◽  
Ze Yang Dai ◽  
Jian Liu

In this paper, we propose a reliable spectrum sensing strategy based on multiple-antenna technique, called RSS-MAT, to combat the channel uncertainties. We derive the closed-form expressions of the false alarm probability and detection probability for RSS-MAT. Finally, we present simulation results to validate our performance analysis. As expected, the simulation results show that RSS-MAT outperforms the spectrum sensing strategy with single antenna.


Sign in / Sign up

Export Citation Format

Share Document