scholarly journals Prototype Development for the Periodontal Model System with the Spatial Compartmentalization by the Additive Manufacturing

2019 ◽  
Vol 9 (21) ◽  
pp. 4687 ◽  
Author(s):  
Chan Ho Park

At present, various tissue engineering strategies have been developed for multiple tissue regeneration and integrative structure formations. However, the regenerations of tooth-supportive structures are still limited and challenging due to the micro-interfacial compartmentalization of multiple tissues, their integrations for systematic responses, and spatiotemporal organizations of engineered tissues. Here, we investigated the scaffold prototype as the regeneration platform of the periodontal complex (cementum-periodontal ligament (PDL)-bone). Based on the tooth image dataset, the prototype scaffold was designed with individual periodontal tissues while using the three-dimensional (3D) printing technique and solvent-casting method with poly-ε-caprolactone (PCL). The architecture was characterized by scanning electron microscope (SEM) and biological assessments were performed with human periodontal ligament (hPDL) cells by confocal microscope. In particular, the angulations and deformations of hPDL cells on PDL architectures were analyzed while using nuclear aspect ratio (NAR = 2.319 ± 0.273) and nuclear shape index (NSI (circularity) = 0.546 ± 0.0273). In in-vitro, designed surface microgroove patterns facilitated angular organizations of hPDL cells (frequency of 0–10° angulations = 75 ± 9.54 out of 97.3 ± 2.52) for seven days. The prototype scaffolding system showed geometric adaptation to the digitized image dataset, hPDL orientations on microgroove-patterned surface, and architectural compartmentalizations for periodontal tissue regeneration.

2019 ◽  
Vol 20 (18) ◽  
pp. 4364 ◽  
Author(s):  
Chan Ho Park

Currently, various tissue engineering strategies have been developed for multiple tissue regeneration and integrative structure formations as well as single tissue formation in musculoskeletal complexes. In particular, the regeneration of periodontal tissues or tooth-supportive structures is still challenging to spatiotemporally compartmentalize PCL (poly-ε-caprolactone)-cementum constructs with micron-scaled interfaces, integrative tissue (or cementum) formations with optimal dimensions along the tooth-root surfaces, and specific orientations of engineered periodontal ligaments (PDLs). Here, we discuss current advanced approaches to spatiotemporally control PDL orientations with specific angulations and to regenerate cementum layers on the tooth-root surfaces with Sharpey’s fiber anchorages for state-of-the-art periodontal tissue engineering.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 61 ◽  
Author(s):  
Yannan Liu ◽  
Juan Gu ◽  
Daidi Fan

A novel, three-dimensional, porous, human-like collagen (HLC)/nano-hydroxyapatite (n-HA) scaffold cross-linked by 1,2,7,8-diepoxyoctane (DEO) was successfully fabricated, which showed excellent mechanical and superior biological properties for bone tissue regeneration in this study. The physicochemical characterizations of different n-HA/HLC/DEO (nHD) scaffolds were investigated by determining the morphology, compression stress, elastic modulus, Young’s modulus and enzymatic hydrolysis behavior in vitro. The results demonstrated that nHD-2 and nHD-3 scaffolds showed superior mechanical properties and resistance to enzymatic hydrolysis compared to nHD-1 scaffolds. The cell viability, live cell staining and cell adhesion analysis results demonstrated that nHD-2 scaffolds exhibited low cytotoxicity and excellent cytocompatibility compared with nHD-1 and nHD-3 scaffolds. Furthermore, subcutaneous injections of nHD-2 scaffolds in rabbits produced superior anti-biodegradation effects and histocompatibility compared with injections of nHD-1 and nHD-3 scaffolds after 1, 2 and 4 weeks. In addition, the repair of bone defects in rabbits demonstrated that nHD-2 scaffolds presented an improved ability for guided bone regeneration and reconstruction compared to commercially available bone scaffold composite hydroxyapatite/collagen (HC). Collectively, the results show that nHD-2 scaffolds show promise for application in bone tissue engineering due to their excellent mechanical properties, anti-biodegradation, anti-biodegradation, biocompatibility and bone repair effects.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ru Jia ◽  
Yingjie Yi ◽  
Jie Liu ◽  
Dandan Pei ◽  
Bo Hu ◽  
...  

Abstract Background Appropriate mechanical stimulation is essential for bone homeostasis in healthy periodontal tissues. While the osteogenesis and osteoclast differentiation of inflammatory periodontal ligament cells under different dynamic loading has not been yet clear. The aim of this study is to clarify the inflammatory, osteogenic and pro-osteoclastic effects of different cyclic stress loading on the inflammatory human periodontal ligament cells (hPDLCs). Methods hPDLCs were isolated from healthy premolars and cultured in alpha minimum Eagle’s medium (α-MEM). Lipopolysaccharides (LPS) were used to induce the inflammation state of hPDLCs in vitro. Determination of LPS concentration for the model of inflammatory periodontium was based on MTT and genes expression analysis. Then the cyclic stress of 0, 0–50, 0–90 and 0–150 kPa was applied to the inflammatory hPDLCs for 5 days respectively. mRNA and protein levels of osteogenic, osteoclastic and inflammation-related markers were examined after the treatment. Results MTT and RT-PCR results showed that 10 μg/ml LPS up-regulated TNF-α, IL-1β, IL-6, IL-8 and MCP-1 mRNA levels (P < 0.05) and did not affect the cell viability (P > 0.05). The excessive loading of stress (150 kPa) with or without LPS strongly increased the expression of inflammatory-related markers TNF-α, IL-1β, IL-6, IL-8, MCP-1 (P < 0.05) and osteoclastic markers RANKL, M-CSF, PTHLH and CTSK compared with other groups (P < 0.05), but had no significant effect on osteogenic genes. While 0–90 kPa cyclic pressure could up-regulate the expression of osteogenic genes ALP, COL-1, RUNX2, OCN, OPN and OSX in the healthy hPDLSCs. Conclusions Collectively, it could be concluded that 0–150 kPa was an excessive stress loading which accelerated both inflammatory and osteoclastic effects, while 0–90 kPa may be a positive factor for the osteogenic differentiation of hPDLCs in vitro.


2015 ◽  
Vol 41 (9) ◽  
pp. 1462-1468 ◽  
Author(s):  
Yoonsun Cha ◽  
Mijeong Jeon ◽  
Hyo-Seol Lee ◽  
Seunghye Kim ◽  
Seong-Oh Kim ◽  
...  

2000 ◽  
Vol 6 (S2) ◽  
pp. 988-989
Author(s):  
F. Buevich ◽  
S. Pulapura ◽  
J. Kohn

Introduction: There is considerable interest in the use of three-dimensional porous scaffolds for tissue regeneration. The presence of an interconnected framework of pores with large surface area facilitates the formation of extracellular matrix and permits cellular ingrowth into implanted structures. For scaffolds to be useful for tissue regeneration, they must maintain good dimensional stability during the lifetime of the implant. While the initial scaffold architecture is often well characterized, a systematic study of the influence of incubation on the scaffold architecture is critical to ensure that the scaffolds retain their interconnected network of pores during their useful lifetime. Herein, we report on the evaluation of the architecture of polyarylate scaffolds and their stability under in vitro conditions using scanning electron microscopy (SEM).The polymers used in this study were selected from a library of degradable polyarylates. This library is the first reported combinatorial library of biodegradable condensation polymers.


2017 ◽  
Vol 9 (2) ◽  
pp. 58-62
Author(s):  
Sujan Rijal

The primary goal is to attain a three dimensional seal, which would lead to an impervious seal. Obturation of the prepared root canal eliminates all avenues of leakage from the oral cavity and the periodontal tissues, sealing any residual irritants that remain within the root canal system after cleaning and shaping. Though the primary goal of obturation has been clearly defined there is still an ongoing research for a sealer and a core material that would provide an apical as well as coronal seal.Journal of Gandaki Medical College Volume, 09, Number 2, July December  2016, Page: 58-62


Sign in / Sign up

Export Citation Format

Share Document