scholarly journals Research and Development of a Low-Cost Smart Cardio-Pulmonary Resuscitation (CPR) Device Using Locally Available Raw Materials for Cardiac Arrest Patients

Proceedings ◽  
2020 ◽  
Vol 67 (1) ◽  
pp. 10
Author(s):  
Mohammad Monirujjaman Khan ◽  
Md. Mujtabir Alam

Cardiovascular disease is the main worldwide reason for death. Cardiovascular diseases can cause the heartbeat to stop. If a person experiences a cardiac arrest, then direct treatments such as cardio-pulmonary resuscitation (CPR) with chest compressions and artificial ventilation along with defibrillation are methods to greatly improve the patient’s possibility of survival. Usually, CPR is completed manually. Manual CPR is carried out by applying external chest compressions followed by artificial ventilation. It helps to pump blood around the person’s body when their heart cannot do this job. This paper presents the development and analysis of a low-cost cardio-pulmonary resuscitation (CPR) device using locally available raw materials for the treatment of cardiac arrest patients. This CPR is automated, portable, and very user friendly. This is a very cost-effective product which people can easily afford to buy. The unit price of this CPR is USD 500.

Resuscitation ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. 100-107 ◽  
Author(s):  
Stefan K. Beckers ◽  
Max H. Skorning ◽  
Michael Fries ◽  
Johannes Bickenbach ◽  
Stephan Beuerlein ◽  
...  

Author(s):  
Amany Micheal ◽  
Yehia Bahei-El-Din ◽  
Mahmoud E. Abd El-Latief

Abstract When inevitable, failure in composite laminates is preferred to occur gracefully to avoid loss of property and possibly life. While the inherent inhomogeneity leads to slow dissipation of damage-related energy, overall failure is fiber-dominated and occurs in a rather brittle manner. Multidirectional plies usually give a more ductile response. Additionally, stiffness and strength as well as cost are important factors to consider in designing composite laminates. It is hence desirable to optimize for high mechanical properties and low cost while keeping graceful failure. Designing composite laminates with hybrid systems and layups, which permit gradual damage energy dissipation, are two ways proposed in this work to optimize for mechanical properties while avoiding catastrophic failure. In the hybrid system design, combining the less expensive glass reinforced plies with carbon reinforced plies offers a cost-effective product, marginal mechanical properties change and ductile profile upon failure. Hybrid glass/carbon composite laminates subjected to three-point bending showed strain to failure which is double that measured for carbon composite specimens, without affecting the ultimate load. Energy dissipation mechanisms were also created by building laminates which were intentionally made discontinuous by introducing cuts in the fibers of the interior plies. This created a longer path for damage before cutting through the next ply resulting in double failure strain with marginal reduction in load. The effect of fiber discontinuity in terms of spacing and distribution are among the factors considered.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Eshetu Mekonnen ◽  
Ameha Kebede ◽  
Tekle Tafesse ◽  
Mesfin Tafesse

Soil stabilization is a mechanical or chemical alteration of one or more soil properties to create an improved soil material possessing the desired engineering properties. The aim of this article was to review bioenzyme-based soil stabilization techniques with an emphasis on bioenzymes production, mechanism of soil stabilization and future challenges, and opportunities of the sector. Soils are stabilized to increase strength and durability or to prevent erosion and dust generation. Cost-effective soil stabilization technology has been a fundamental part of any construction and is very important for economic growth in any country. In some cases, construction has been challenged due to the high cost of soil stabilization processes. Besides, methods of stabilizations using common stabilizing agents are getting costly. Currently, there is a growing interest to identify new and green technology to improve construction techniques and to expand the road network. Therefore, the search for new materials and improved techniques to process the local materials has received an increased focus. For developing countries, bioenzymes are now creating an opportunity to improve soil stability with tremendous effectiveness in the overall process of soil stabilization. In the world, bioenzymes have been used in different projects for several years and are generally proprietary products, often of patented formulation that needs intensive field tests. Currently, the use and production of bioenzymes is becoming the most promising key for the advancement of a country by saving time, energy, and finance. It also reduces environmental pollution due to carbon emission by the conventional stabilizers. Thus, a better understanding of this emerging technology is of utmost importance to exploit any improvement it can offer to soil stability. With little research and practice, it is possible to produce soil stabilizing bioenzymes using local raw materials. Due to this, production of low cost, easily and widely applicable, and environmentally friendly enzymatic formulations from locally available raw materials should be the interest of research and academic institutes of any country.


2020 ◽  
Author(s):  
Tengteng Wang ◽  
Xiude Chen ◽  
Qinghua Xia ◽  
Qi Zhang ◽  
Xunbo Jin

Abstract Background In recent years, the minimally invasive technique for treating nephrolithiasis has been developed rapidly. Particularly, the flexible ureteroscopy has been extensively applied. For flexible ureteroscopy lithotripsy, the perfusion equipment is necessary to ensure a clear intraoperative field of view. This study was aimed to prepare a set of economical and efficient ureteroscopic irrigation system by some commonly used devices in clinical diagnosis and treatment practice. Methods In this study, according to requirements of the endoscopic surgery, the infusion apparatus, infusion apparatus extension tube, three-way plug valve, Luer one-way valve, ordinary syringe, and negative pressure spring were used to assemble the irrigation system with different functions. Results The autonomous perfusion device realized the real-time conversion of manual injection, continuous perfusion or negative pressure suction. The entire equipment has many advantages, including easily accessible raw materials, low cost, simple assembly process, easy operation, strong controllability, effective control ability for the intrarenal pressure, and high safety. Conclusions The commonly used medical devices were applied to assemble the autonomous ureteroscopic irrigation system, which is flexible, simple and cost-effective and thus can be applied in flexible ureteroscopic surgery.


Heart ◽  
2018 ◽  
Vol 104 (13) ◽  
pp. 1056-1061 ◽  
Author(s):  
Andrew W Harris ◽  
Peter J Kudenchuk

Sudden cardiac arrest is a leading cause of death worldwide. Despite significant advances in resuscitation science since the initial use of external chest compressions in humans nearly 60 years ago, there continues to be wide variability in rates of successful resuscitation across communities. The American Heart Association (AHA) and European Resuscitation Council emphasise the importance of high-quality chest compressions as the foundation of resuscitation care. We review the physiological basis for the association between chest compression quality and clinical outcomes and the scientific basis for the AHA’s key metrics for high-quality cardiopulmonary resuscitation. Finally, we highlight that implementation of strategies that promote effective chest compressions can improve outcomes in all patients with cardiac arrest.


2013 ◽  
Vol 44 (3) ◽  
pp. 691-697 ◽  
Author(s):  
Kyoung Chul Cha ◽  
Ho Jung Kim ◽  
Hyung Jin Shin ◽  
Hyun Kim ◽  
Kang Hyun Lee ◽  
...  

Author(s):  
Sagar Alwadkar ◽  
Deeplata Mendhe

Introduction: Cardiopulmonary resuscitation is the technique of life-saving procedure in that artificial ventilation uses external chest compressions to maintain circulation flow of the heart and oxygenation during cardiac arrest. Many peoples in the developed and developing countries have taken known education of Cardiopulmonary resuscitation training which was launched jointly by Universal Medical Assistance International Center. Objectives: 1. To evaluate the previous knowledge and skill regarding CPR among workers of ST Depot. 2. To evaluate effectiveness and correlation the post-test knowledge and skill score regarding CPR among workers of ST Depot. 3. To identify the association with the post-test skill score regarding CPR among workers of ST Depot. Methodology: In this study, will the effectiveness of simulation teaching regarding cardiopulmonary resuscitation the sample will be the 100 ST depot workers. The workers will select according to inclusion and exclusion criteria as well as the Purposive sampling technique. One group pre-test and post-test design. It will be conducted at State Transport Depot. Wardha Maharashtra, India respectively. The data will be collected by using questionnaires and an observational checklist for simulation teaching on cardiopulmonary resuscitation. Conclusion:  It is concluded that the effectiveness of simulation teaching on CPR was found to be effective in improving the knowledge and skill of workers of ST depot.


2005 ◽  
Vol 500-501 ◽  
pp. 471-480 ◽  
Author(s):  
Michael Korchynsky

The recent worldwide surge of steel consumption, mainly of low-strength carbon grades, has created raw-materials shortages and price increases. These supply-demand strains could be relaxed by satisfying engineering needs with less steel. However, materials used for such a substitution must combine high weight reducing potential with low cost. Microalloyed (MA) steels are cost- effective substitutes, since their high strength is the result of grain refinement and precipitation hardening. The optimum alloy design of MA steels combines superior properties with lowest processing cost. The growing use of EAF and thin slab casting technology improve the economics of MA steels, especially when alloyed with vanadium. The monetary value of weight reduction is sufficient to increase the profitability of steel makers and to lower the material cost to steel users. This “win-win” situation is financed by the elimination of efforts spent in producing inefficient steel, yielding an increase in wealth formation. To gain acceptance of substitution by the consumer, a long-term strategic plan is needed to be implemented by the beneficiaries – steel producers and steel users. The successful substitution is of importance to the national economy, resources and energy conservation, and the environment. Since microalloyed steels, used as a replacement for carbon steels, offer low-cost weight savings, they deserve to be classified as advanced structural materials.


2013 ◽  
Vol 42 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Md. Shafiqul Islam ◽  
Md. Rakibul Hasan ◽  
Fariba Mohammadi ◽  
Antara Majumdar ◽  
Ali Ahmad

In today’s world with the increasing population, the world's energy needs are growing steadily andthe crisis for power is also increasing. All the conventional sources of energy like gas, coal, oil etc are limited.In this situation, the need for establishing a renewable energy source as an alternative energy generation systemhas become very important for sustainable energy security of the country. Among various renewable energysources, solar energy comprises a large portion. The solar energy captivated by Earth’s atmosphere, oceansand land is about 385000 EJ[1]. But only less than 1% of useful energy comes from solar power [2]. Thisstatistics shows that, the sun shine produces 35000 times more power on earth than the daily power productionusing solar energy. Thus the earth receives more energy from the sun in just one hour than the world uses in awhole year.[3] The conversion of sunlight into electricity using solar cells system (10-14%) is worthwhile way ofproducing this alternative energy. Bangladesh receives strong sunshine throughout the whole year (3.8-6.42Kw-hr/m2) and it has been found that the average sunshine hours are 6.69, 6.16 and 4.81in winter, summer andmonsoon, respectively.[4] Bangladesh is also adopting means to use solar energy day by day. Many privateCompanies in Bangladesh import solar panels from abroad and sell them into the country. The approximatecost for importing readymade panels varies from 90-98 BDT per Wp. There are some companies which importsolar cells from foreign countries and assemble them into panels. The average cost for importing cells isapproximately 41-57 BDT per Wp. The cost of assembled panels from imported cells is approximately 78-84BDT per Wp. From the analysis it is found that, the cost of a locally produced PV panel is 10 percent lower thanimported ones [5] because of 60% cost incurs for producing cells from raw materials. Although solar panels arebeing produced in Bangladesh, till now solar cells have not been fabricated yet. In Bangladesh for the first time‘Bangladesh Atomic Energy Commission (BAEC)’ is going to set up a laboratory to fabricate crystalline solarcells. It is anticipated that producing cells from raw materials locally and then assembling them into PV panelswill reduce the cost almost 30%. This paper explores how fabricating crystalline solar cells locally isanticipated to reduce cost of solar panels. If the cost effective technology could be made familiar in Bangladeshthen it would help in solving our power crisis in a great deal.DOI: http://dx.doi.org/10.3329/jme.v42i1.15934


Sign in / Sign up

Export Citation Format

Share Document