scholarly journals Motion Sensor Application on Building Lighting Installation for Energy Saving and Carbon Reduction Joint Crediting Mechanism

2018 ◽  
Vol 1 (3) ◽  
pp. 23 ◽  
Author(s):  
Indra Riyanto ◽  
Lestari Margatama ◽  
H. Hakim ◽  
Martini ◽  
Dicky Hindarto

Although common in developed countries such as Japan and Taiwan, the use of lamps coupled with motion sensors are still uncommon and even rare in Indonesia. Our experiment aims to show that simple installation of commercially available motion sensors can contribute to reduce the electricity bill from the increase of energy efficiency, abundance in availability of energy being the main factor in Indonesian high energy consumption habits. High electricity demand for consumption at current supply level in Indonesia led to the rising cost of electricity bills. This factor is compounded by the fact that many electric generators in Indonesia still use fossil fuels, which contributes to the high basic generation cost. UBL is one of the universities that aim to be a green campus. Our research explores the possibility of installing motion sensors to contribute to the energy efficiency. Although mostly common in developed countries, the use of motion sensors for energy efficiency is still rare, especially in Indonesia. Despite rising cost and supply shortages, Indonesian buildings are still of high energy consumption. Our experiment shows that simple installation of commercially available motion sensors can contribute to reduce the electricity bill from the increase of energy efficiency. One of the efforts to lower energy demand on the consumer side is to use the electricity efficiently, such as turning off lights in a room when it is not in use. This method can be simply done by turning the light switches for office and classrooms, but difficult to do in public spaces such as toilets and corridors. Automatic light switches experimentally installed in sample toilet rooms prove that electricity consumption from the lamps can contribute to the reduction of total weekly energy that translates into Greenhouse Gas emission reduction.

Author(s):  
Indra Riyanto ◽  
Lestari Margatama ◽  
Hakim Hakim ◽  
Martini Martini ◽  
Dicky Edwin Hindarto

High electricity demand for consumption at current supply level in Indonesia led to the rising cost of electricity bills. This factor is compounded by the fact that many electric generators in Indonesia still use fossil fuels, which contributes to the high basic generation cost. UBL is one of the universities that aim to be a green campus. Our research explores the possibility of installing motion sensor to contribute on the energy efficiency. Although mostly common in developed countries, the use of motion sensor for energy efficiency is still rare, especially in Indonesia. despite rising cost and supply shortages, Indonesian buildings are still of high energy consumption. our experiment shows that simple installation of commercially available motion sensors can contribute to reduce the electricity bill from the increase of energy efficiency. One of the efforts to lower energy demand in consumer side is to use the electricity efficiently, such as turning off lights in a room when it's not in use. This method can be simply done by turning the light switches for office and classrooms, but difficult to do in public spaces such as toilets and corridors. Our experiment shows that simple installation of commercially available motion sensors can contribute to reduce the electricity bill from the increase of energy efficiency. Automatic light switches experimentally installed in sample toilet room prove that electricity consumption from the lamps can contribute to the reduction of total weekly energy that translates into Green House Gas emission reduction.


2017 ◽  
Vol 9 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Maryam Hamlehdar ◽  
Alireza Aslani

Abstract Today, the fossil fuels have dominant share of energy supply in order to respond to the high energy demand in the world. Norway is one of the countries with rich sources of fossil fuels and renewable energy sources. The current work is to investigate on the status of energy demand in Norway. First, energy and electricity consumption in various sectors, including industrial, residential are calculated. Then, energy demand in Norway is forecasted by using available tools. After that, the relationship between energy consumption in Norway with Basic economics parameters such as GDP, population and industry growth rate has determined by using linear regression model. Finally, the regression result shows a low correlation between variables.


2021 ◽  
Vol 64 (2) ◽  
pp. 89-94
Author(s):  
N. A. Cheremiskina ◽  
N. V. Shchukina ◽  
N. B. Loshkarev ◽  
V. V. Lavrov

One of the most energy-intensive industries is ferrous metallurgy. The metallurgical sector in industrially developed countries is reducing its specific energy consumption per one ton of products by approximately 1.0 – 1.5 % per annum. In Russia, obsolete technology is the main reason for the high-energy intensity of industrial product. Energy saving in industrial production is associated with production technology and the scope of fuel and energy resources consumption. Therefore, ways to improve energy efficiency focus on reducing energy consumption of any kind during a specific process in a specific process or thermal unit. Ensuring the economical operation of furnace units requires detailed preliminary and verification analyses, upgrading and introduction of state-of-the-art equipment. The study presents a flow diagram and features of thermal operation of a new drum-type chamber furnace for heating metal products for quenching. The technical parameters of the furnace, the results of the thermo-technical analysis, the heat balance and the specific fuel consumption as applicable to the created design are also presented. The flow diagram of the furnace has significant advantages in terms of the energy efficiency of fuel as compared to the roller and conveyor methods of metal transportation. Placing blanks on the drum significantly reduces the complexity of their transportation. Thanks to its small length the proposed design is compact and easy to place in a workshop. The use of a recuperative fuel burning device allows the efficient use of the heat of waste gases in the heating process. The proposed design and method of products transportation in the furnace working space can be used for the heat treatment of bars, pipes, strips, as well as rolled steel of various shapes.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ali Dashti ◽  
Maziar Gholami Korzani

AbstractRegarding disadvantages of fossil fuels, renewables like geothermals can be an eco-friendly source of energy. In Iran, the availability of fossil fuels and poor policies surrounding subsidies (ranked as the first in giving subsidies) caused high energy consumption (1.75 times higher than the global average). Energy is mainly provided by fossil fuels that leads to high CO2 emission. This study evaluates the energy consumption trend and potentials of more sustainable resources like geothermals in Iran. The formation of geothermals is tightly linked with geological prerequisites that are partly present within Iran. Adjacency of the metamorphic with volcanic zones, existence of numerous faults and seismic activity of Iran are notable geological characteristics confirming the geothermal potential. In Iran, 18 regions are being explored as the most promising geothermal prospects. To test the potentials of one of these regions, a geothermal power plant with a capacity of 5 MWe is installed in the Sabalan Field. Northwest (where Sabalan Field is located), central (like Mahalat Region) and southeast of Iran (Makran Zone) can be regarded as promising zones for hosting geothermal prospects.


2019 ◽  
Vol 14 (3) ◽  
pp. 129-142
Author(s):  
Madeeha Altaf ◽  
Frances Hill

The construction of fully glazed commercial building facades responsible for high energy consumption has become a common architectural practice worldwide irrespective of the climate. This paper presents the methodology to optimize the Window to Wall Ratio (WWR) with and without daylight utilization to reduce energy consumption in office buildings for the climate of Lahore, Pakistan, using a simulation tool COMFEN. The impacts of solar heat and daylight entering through the building façade with reference to different WWR and orientation were explored for the selection of optimum WWR. The optimum WWR was selected on the basis of least energy consumption whilst achieving a threshold lighting level. When daylight is not utilized, the energy demand is minimized by the lowest possible WWR. With daylight utilization, energy demand is optimized by use of WWRs of 13% to 30% according to orientation. Optimum WWR with daylight utilization offered a more balanced solution. The methodology used in this study can be applied to any location around the world to find optimum WWR for any glazing type.


2013 ◽  
Vol 694-697 ◽  
pp. 3239-3242 ◽  
Author(s):  
Wei Zhen Wang ◽  
Shu Lian Yu ◽  
Qi Zhen Wang ◽  
Yu Bing Luan ◽  
Jing Zhen Wang ◽  
...  

In view of high energy consumption situation in the apparel industry in the background of cyclic economy, the author conducts technical experiment for clothing style change according to transformation design of clothing structure elements, and establishes the environmental protection philosophy of enabling raw materials for one garment to satisfy the function of raw materials for two or more garments. This not only maximizes the energy efficiency of clothing materials, but also optimizes life cycle of products, and accordingly promotes the energy-saving and environment-friendly eco-civilization construction in the apparel industry.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771139 ◽  
Author(s):  
Ying Xie ◽  
Xiufen Ma ◽  
Haifeng Ning ◽  
Zongming Yuan ◽  
Ting Xie

A long-distance natural gas pipeline system consists of considerable equipment and many pipe segments, but the conventional energy efficiency index of a natural gas pipeline is considered as a whole. Because the specific energy consumption of each unit cannot be determined, the index system is not perfect, and evaluating the energy efficiency of a natural gas pipeline system is difficult. The energy efficiency evaluation model for a natural gas pipeline was established using the analytic hierarchy process. A judgment matrix was constructed based on the energy efficiency index system of a long-distance natural gas pipeline, and the weight coefficient was calculated using the characteristic root method. Then, the consistency of the established judgment matrix was verified. The energy efficiency evaluation model successfully quantified the qualitative factors that affect natural gas pipelines. The comprehensive energy efficiency coefficient G of the natural gas pipeline was obtained from the operational data of the natural gas pipeline; then, the equipment or pipe segments with high energy consumption can be identified. The energy efficiency evaluation program of the natural gas pipeline was developed using Visual Basic for Applications, which significantly reduced the evaluation workload. The natural gas pipeline energy efficiency evaluation model is used to evaluate the energy efficiency of a natural gas pipeline, to identify the high energy consumption equipment or pipe segments, and to propose measures to improve the energy efficiency. The results show that the gas pipeline energy efficiency evaluation model and evaluation procedures can identify high energy consumption equipment or pipe sections in complex natural gas pipelines.


2013 ◽  
Vol 690-693 ◽  
pp. 3082-3085
Author(s):  
Ji Hai Duan ◽  
Xin Mei

The main problem of existing methyl chlorosilane separation process is high energy consumption and low products purity. Based on the column grand composite curve is established by Aspen Plus and combined with the process integration technology, a modification of the process is proposed to improve the energy efficiency. Compared with the original process, the total condense and reboiler duty decrease by 8.47%, 8.96% respectively.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3699
Author(s):  
Domenico Curto ◽  
Andrea Guercio ◽  
Vincenzo Franzitta

In order to limit the anthropic emissions of CO2, research is currently investigating new materials for the building sector. The main purpose is the reduction in the embodied energy consumption, especially in the residential sector, and consequently the limitation of the direct and indirect utilization of fossil fuels, for the indoor heating, cooling, and ventilation services. Indeed, the residential sector is affected by a high energy demand, thus the choice of improved materials is fundamental to improve the sustainability. All phases: construction, building life, and dismantling are impacting in terms of resource and energy consumption, both associated with the emissions of pollutants in the atmosphere. The aim of this experimental research is to study the thermal insulation and the acoustic absorption of a material composed by natural lime, water, and shives from sativa hemp, a variety of hemp usable for industrial applications. In order to assess the main characteristics of this material, some specimens have been made according to required shapes and sizes to test them in specific machines. The results obtained from the tests are compared with the values of similar lime-based materials already available on the market. The comparison shows how, in certain aspects, the lime and hemp shives materials represent a concrete alternative to conventional materials. This completely natural material would like to achieve thermal and acoustic comfort in indoor environments.


Transport ◽  
2010 ◽  
Vol 25 (4) ◽  
pp. 448-453 ◽  
Author(s):  
Anwar Al-Mofleh ◽  
Soib Taib ◽  
Wael A. Salah

Road transport represents one of the greatest areas of challenge for energy efficiency. A growing percentage of petrol usage is due to consumption in the transportation sector. However, in other sectors, petrol has been recently partially or totally substituted by other fuels. The need for worldwide action to achieve energy efficiency in the transportation sector has been recognized by the agencies of the United Nations and other international governmental and non‐governmental organizations. Transportation is one of the key factors for the growth and development of Malaysian economy. Currently, more than 80% of primary energy consumption based on fossil fuels and demand stays high and is supposed continually grow in the future. Even if technology developments eventually able to reduce specific consumption, world energy demand is likely to increase in line with its population. This sector also accounts for a substantial amount of air pollution in cities and contributes significantly to greenhouse gas emissions. This paper aims to analyze factors influencing the pattern and emission level of energy consumption in the transportation sector of Malaysia and extrapolates the total energy demand and vehicular emissions.


Sign in / Sign up

Export Citation Format

Share Document