scholarly journals Explosive Cyclogenesis around the Korean Peninsula in May 2016 from a Potential Vorticity Perspective: Case Study and Numerical Simulations

Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 322 ◽  
Author(s):  
Ki-Young Heo ◽  
Kyung-Ja Ha ◽  
Taemin Ha

An explosive cyclone event that occurred near the Korean Peninsula in early May 2016 is simulated using the Weather Research and Forecasting (WRF) model to examine the developmental mechanisms of the explosive cyclone. After confirming that the WRF model reproduces the synoptic environments and main features of the event well, the favorable environmental conditions for the rapid development of the cyclone are analyzed, and the explosive development mechanisms of the cyclone are investigated with perturbation potential vorticity (PV) fields. The piecewise PV inversion method is used to identify the dynamically relevant meteorological fields associated with each perturbation PV anomaly. The rapid deepening of the surface cyclone was influenced by both adiabatic (an upper tropospheric PV anomaly) and diabatic (a low-level PV anomaly associated with condensational heating) processes, while the baroclinic processes in the lower troposphere had the smallest contribution. In the explosive phase of the cyclone life cycle, the diabatically generated PV anomalies associated with condensational heating induced by the ascending air in the warm conveyor belt are the most important factors for the initial intensity of the cyclone. The upper-level forcing is the most important factor in the evolution of the cyclone’s track, but it is of secondary importance for the initial strong deepening.

2015 ◽  
Vol 143 (10) ◽  
pp. 4126-4144 ◽  
Author(s):  
Hidetaka Hirata ◽  
Ryuichi Kawamura ◽  
Masaya Kato ◽  
Taro Shinoda

Abstract This study focused on an explosive cyclone migrating along the southern periphery of the Kuroshio/Kuroshio Extension in the middle of January 2013 and examined how those warm currents played an active role in the rapid development of the cyclone using a high-resolution coupled atmosphere–ocean regional model. The evolutions of surface fronts of the simulated cyclone resemble the Shapiro–Keyser model. At the time of the maximum deepening rate, strong mesoscale diabatic heating areas appear over the bent-back front and the warm front east of the cyclone center. Diabatic heating over the bent-back front and the eastern warm front is mainly induced by the condensation of moisture imported by the cold conveyor belt (CCB) and the warm conveyor belt (WCB), respectively. The dry air parcels transported by the CCB can receive large amounts of moisture from the warm currents, whereas the very humid air parcels transported by the WCB can hardly be modified by those currents. The well-organized nature of the CCB plays a key role not only in enhancing surface evaporation from the warm currents but also in importing the evaporated vapor into the bent-back front. The imported vapor converges at the bent-back front, leading to latent heat release. The latent heating facilitates the cyclone’s development through the production of positive potential vorticity in the lower troposphere. Its deepening can, in turn, reinforce the CCB. In the presence of a favorable synoptic-scale environment, such a positive feedback process can lead to the rapid intensification of a cyclone over warm currents.


2017 ◽  
Vol 9 (5) ◽  
pp. 1
Author(s):  
Philbert Modest Luhunga ◽  
Agnes Kijazi ◽  
Ladislaus Chang a ◽  
Chuki A Sangalugembe ◽  
Doreen Mwara Anande ◽  
...  

The work of this paper is a first step of the new paradigm, to use the Moist Potential Vorticity Vector (MPVV) as a diagnostic variable of rainfall events in Tanzania. The paper aims at computing and assessing the usefulness of MPVV in the diagnosis of rainfall events that occurred on 08th and 09th May 2017 over different regions in Tanzania. The relative contributions of horizontal, vertical components and the magnitude of MPVV on diagnosis of rainfall events are assessed. Hourly dynamic and thermodynamic variables of wind speed, temperature, atmospheric pressure and relative humidity from the numerical output generated by the Weather Research and Forecasting (WRF) Model, running at Tanzania Meteorological Agency (TMA) are used in computation of MPVV. The computed MPVV is then compared with WRF model forecasts and observed rainfall. It is found that in most parts of the country, particularly over coastal areas and North-Eastern Highlands, MPVV exhibited positive values in the lower troposphere (925hPa) and (850hPa) indicating local instability possibly associated with topographic effects, and continent/ocean contrast. MPVV is mostly positive with slightly negative values indicating instabilities (due to possible convective instability). Moreover, MPVV provides remarkably accurate tracking of the locations received rainfall, suggesting its potential use as a dynamic diagnostic variable of rainfall events in Tanzania.


2018 ◽  
Author(s):  
Zhaohui Xiong ◽  
Bao Zhang ◽  
Yibin Yao

Abstract. Water vapor plays an important role in various scales of weather processes. However, there are limited means to monitor its 3-dimensional (3D) dynamical changes. The Numerical Weather Prediction (NWP) model and the Global Navigation Satellite System (GNSS) tomography technique are two of the limited means. Here, we conduct an interesting comparison between the GNSS tomography technique and the Weather Research and Forecasting (WRF) model (a representative of the NWP models) in retrieving Wet Refractivity (WR) in Hong Kong area during a rainy period and a rainless period. The GNSS tomography technique is used to retrieve WR from the GNSS slant wet delay. The WRF Data Assimilation (WRFDA) model is used to assimilate GNSS Zenith Tropospheric Delay (ZTD) to improve the background data. The WRF model is used to generate reanalysis data using the WRFDA output as the initial values. The radiosonde data are used to validate the WR derived from the GNSS tomography and the reanalysis data. The Root Mean Square (RMS) of the tomographic WR, the reanalysis WR that assimilate GNSS ZTD, and the reanalysis WR that without assimilating GNSS ZTD are 6.50 mm/km, 4.31 mm/km and 4.15 mm/km in the rainy period. The RMS becomes 7.02 mm/km, 7.26 mm/km and 6.35 mm/km in the rainless period. The lower accuracy in the rainless period is mainy due to the sharp variation of WR in the vertical direction. The results also show that assimilating GNSS ZTD into the WRFDA model only slightly improves the accuracy of the reanalysis WR and that the reanalysis WR is better than the tomographic WR in most cases. However, in a special experimental period when the water vapor is highly concentrated in the lower troposphere, the tomographic WR outperforms the reanalysis WR in the lower troposphere. When we assimilate the tomographic WR in the lower troposphere into the WRFDA model, the reanalysis WR is improved.


Climate ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 114
Author(s):  
Min Shao ◽  
Yansong Bao ◽  
George P. Petropoulos ◽  
Hongfang Zhang

This study investigated the impacts of stratospheric temperatures and their variations on tropospheric short-term weather forecasting using the Advanced Research Weather Research and Forecasting (WRF-ARW) system with real satellite data assimilation. Satellite-borne microwave stratospheric temperature measurements up to 1 mb, from the Advanced Microwave Sounding Unit-A (AMSU-A), the Advanced Technology Microwave Sounder (ATMS), and the Special Sensor microwave Imager/Sounder (SSMI/S), were assimilated into the WRF model over the continental U.S. during winter and summer 2015 using the community Gridpoint Statistical Interpolation (GSI) system. Adjusted stratospheric temperature related to upper stratospheric ozone absorption of short-wave (SW) radiation further lead to vibration in downward SW radiation in winter predictions and overall reduced with a maximum of 5.5% reduction of downward SW radiation in summer predictions. Stratospheric signals in winter need 48- to 72-h to propagate to the lower troposphere while near-instant tropospheric response to the stratospheric initial conditions are observed in summer predictions. A schematic plot illustrated the physical processes of the coupled stratosphere and troposphere related to radiative processes. Our results suggest that the inclusion of the entire stratosphere and better representation of the upper stratosphere are important in regional NWP systems in short-term forecasts.


Ecology ◽  
2013 ◽  
Author(s):  
John MacKinnon

East Asian biomes include the major biological ecosystems that make up the land area of East Asia, specifically China with Taiwan, Mongolia, Japan, and the Korean Peninsula. These vary from northern tundra and boreal to southern tropical and subtropical ecosystems, include several major mountain ranges, and comprise forest ecosystems, grasslands, deserts, and also important wetland systems. One literally outstanding globally unique feature of the region is the Tibetan-Qinghai Plateau, which forms the source of many of Asia’s major rivers and also drives the monsoon climatic patterns of the entire region. The region includes the world’s most populated country, China, and some of the most densely populated areas but also some of the least populated areas of the planet, including Mongolia with the lowest density. The region is unusually rich in both flora and fauna and has many distinctive endemic features and relic species. The biome has been a great source of domesticated species and economically important species but faces severe conservation challenges as a result of rapid development and changing climate.


Atmosphere ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 428 ◽  
Author(s):  
Lifeng Guo ◽  
Baozhang Chen ◽  
Huifang Zhang ◽  
Guang Xu ◽  
Lijiang Lu ◽  
...  

In this study, we evaluated estimates and predictions of the PM2.5 (fine particulate matter) concentrations and emissions in Xuzhou, China, using a coupled Lagrangian particle dispersion modeling system (FLEXPART-WRF). A Bayesian inversion method was used in FLEXPART-WRF to improve the emission calculation and mixing ratio estimation for PM2.5. We first examined the inversion modeling performance by comparing the model predictions with PM2.5 concentration observations from four stations in Xuzhou. The linear correlation analysis between the predicted PM2.5 concentrations and the observations shows that our inversion forecast system is much better than the system before calibration (with correlation coefficients of R = 0.639 vs. 0.459, respectively, and root mean square errors of RMSE = 7.407 vs. 9.805 µg/m3, respectively). We also estimated the monthly average emission flux in Xuzhou to be 4188.26 Mg/month, which is much higher (by ~10.12%) than the emission flux predicted by the multiscale emission inventory data (MEIC) (3803.5 Mg/month). In addition, the monthly average emission flux shows obvious seasonal variation, with the lowest PM2.5 flux in summer and the highest flux in winter. This pattern is mainly due to the additional heating fuels used in the cold season, resulting in many fine particulates in the atmosphere. Although the inversion and forecast results were improved to some extent, the inversion system can be improved further, e.g., by increasing the number of observation values and improving the accuracy of the a priori emission values. Further research and analysis are recommended to help improve the forecast precision of real-time PM2.5 concentrations and the corresponding monthly emission fluxes.


2017 ◽  
Vol 74 (5) ◽  
pp. 1445-1454 ◽  
Author(s):  
Huaji Pang ◽  
Gang Fu

AbstractThree cases of explosively developing extratropical cyclones over eastern Asia are analyzed using ERA-Interim data. The morphological characteristics of the upper-tropospheric potential vorticity (PV) were examined. The common feature of all of these three cases is a hook-shaped high-PV streamer wrapping counterclockwise around the center of surface cyclones on the southern and eastern sides and an arch-shaped low-PV tongue that wrapped the high-PV hook head from the north. The hook-shaped high-PV tongue overlaps with the maximum centers of both the relative vorticity and static stability parameter, indicating the stratospheric nature of the PV source inside the hook-shaped high-PV tongue.The analysis indicates that there existed a deep tower of high PV above the surface cyclone at the time when these cyclones underwent explosive cyclogenesis. The high PV in the upper troposphere originates from the polar stratospheric PV reservoir associated with the tropopause-folding process. The high PV in the lower troposphere, however, is associated with the latent heat release, as nearly 70%–90% of the high-PV values in the lower troposphere reside in the region where the rainfall is the heaviest.


2010 ◽  
Vol 67 (9) ◽  
pp. 2734-2751 ◽  
Author(s):  
Yanping Li ◽  
Ronald B. Smith

Abstract Harmonic analysis of pressure, temperature, and precipitation data from 1000 Automated Surface Observing System (ASOS) stations reveals a mix of stationary and east–west moving disturbances east of the Rockies. Optimization of the pressure data using a “temperature-based tide assumption” separates a strong sun-following continentally enhanced tide from a smaller eastward-propagating wave (EPW). The latter signal moves at a similar speed to the previously discovered eastward-moving precipitation systems. Analysis of ASOS summer precipitation data confirms eastward propagation, but east of 90°W it shows nonpropagating diurnal convection at a fixed local time (i.e., 1800 LST). Analysis of winter days still finds the EPW, suggesting that it is the cause and not the result of the propagating precipitation. A possible mechanism for the EPW is developed from the linear Bousinesq equations with heating and wind shear. Solutions show eastward-moving diurnal pulses of potential vorticity (PV) generated by imposed heating over the Rockies. Because of the background shear, these pulses produce vertical motion in the lower troposphere. The PV hypothesis for precipitation propagation was tested with North American Regional Reanalysis (NARR) data. Diurnal drifting thermal and PV anomalies are clearly found near the 500- and 600-hPa levels in both winter and summer. In winter, the PV signal is weaker, moves faster, and does not influence precipitation. The existence of the winter PV signal again suggests that it is the cause, not the effect, of summer propagating precipitation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shuqin Zhang ◽  
Chunlei Liu ◽  
Jianjun Xu ◽  
Shaojing Zhang ◽  
Ruoying Tang ◽  
...  

Contributions of different physical processes to the development of a super explosive cyclone (SEC) migrating over the Gulf Stream with the maximum deepening rate of 3.45 Bergeron were investigated using the ERA5 atmospheric reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF). The evolution of the SEC resembled the Shapiro-Keyser model. The moisture transported to the bent-back front by easterlies from Gulf Stream favored precipitation and enhanced the latent heat release. The bent-back front and warm front were dominated by the water vapor convergence in the mid-low troposphere, the cyclonic-vorticity advection in the mid-upper troposphere and the divergence in the upper troposphere. These factors favored the rapid development of the SEC, but their contributions showed significant differences during the explosive-developing stage. The diagnostic results based on the Zwack-Okossi equation suggested that the early explosive development of the SEC was mainly forced by the diabatic heating in the mid-low troposphere. From the early explosive-developing moment to maximum-deepening-rate moment, the diabatic heating, warm-air advection and cyclonic-vorticity advection were all enhanced significantly, their combination forced the most explosive development, and the diabatic heating had the biggest contribution, followed by the warm-air advection and cyclonic-vorticity advection, which is different from the previous studies of ECs over the Northwestern Atlantic. The cross section of these factors suggested that during the rapid development, the cyclonic-vorticity advection was distributed and enhanced significantly in the mid-low troposphere, the warm-air advection was strengthened significantly in the mid-low and upper troposphere, and the diabatic heating was distributed in the middle troposphere.


Sign in / Sign up

Export Citation Format

Share Document