scholarly journals Ice Hydrometeor Shape Estimations Using Polarimetric Operational and Research Radar Measurements

Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 97 ◽  
Author(s):  
Sergey Y. Matrosov

A polarimetric radar method to estimate mean shapes of ice hydrometeors was applied to several snowfall and ice cloud events observed by operational and research weather radars. The hydrometeor shape information is described in terms of their aspect ratios, r, which represent the ratio of particle minor and major dimensions. The method is based on the relations between depolarization ratio (DR) estimates and aspect ratios. DR values, which are a proxy for circular depolarization ratio, were reconstructed from radar variables of reflectivity factor, Ze, differential reflectivity, ZDR, and copolar correlation coefficient ρhv, which are available from radar systems operating in either simultaneous or alternate transmutation of horizontally and vertically polarized signals. DR-r relations were developed for retrieving aspect ratios and their sensitivity to different assumptions and model uncertainties were discussed. To account for changing particle bulk density, which is a major contributor to the retrieval uncertainty, an approach is suggested to tune the DR-r relations using reflectivity-based estimates of characteristic hydrometeor size. The analyzed events include moderate snowfall observed by an operational S-band weather radar and a precipitating ice cloud observed by a scanning Ka-band cloud radar at an Arctic location. Uncertainties of the retrievals are discussed.

2017 ◽  
Vol 34 (12) ◽  
pp. 2569-2587 ◽  
Author(s):  
Sergey Y. Matrosov ◽  
Carl G. Schmitt ◽  
Maximilian Maahn ◽  
Gijs de Boer

AbstractA remote sensing approach to retrieve the degree of nonsphericity of ice hydrometeors using scanning polarimetric Ka-band radar measurements from a U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program cloud radar operated in an alternate transmission–simultaneous reception mode is introduced. Nonsphericity is characterized by aspect ratios representing the ratios of particle minor-to-major dimensions. The approach is based on the use of a circular depolarization ratio (CDR) proxy reconstructed from differential reflectivity ZDR and copolar correlation coefficient ρhυ linear polarization measurements. Essentially combining information contained in ZDR and ρhυ, CDR-based retrievals of aspect ratios are fairly insensitive to hydrometeor orientation if measurements are performed at elevation angles of around 40°–50°. The suggested approach is applied to data collected using the third ARM Mobile Facility (AMF3), deployed to Oliktok Point, Alaska. Aspect ratio retrievals were also performed using ZDR measurements that are more strongly (compared to CDR) influenced by hydrometeor orientation. The results of radar-based retrievals are compared with in situ measurements from the tethered balloon system (TBS)-based video ice particle sampler and the ground-based multiangle snowflake camera. The observed ice hydrometeors were predominantly irregular-shaped ice crystals and aggregates, with aspect ratios varying between approximately 0.3 and 0.8. The retrievals assume that particle bulk density influencing (besides the particle shape) observed polarimetric variables can be deduced from the estimates of particle characteristic size. Uncertainties of CDR-based aspect ratio retrievals are estimated at about 0.1–0.15. Given these uncertainties, radar-based retrievals generally agreed with in situ measurements. The advantages of using the CDR proxy compared to the linear depolarization ratio are discussed.


2020 ◽  
Vol 59 (9) ◽  
pp. 1503-1517
Author(s):  
Sergey Y. Matrosov ◽  
Alexander V. Ryzhkov ◽  
Maximilian Maahn ◽  
Gijs de Boer

AbstractA polarimetric radar–based method for retrieving atmospheric ice particle shapes is applied to snowfall measurements by a scanning Ka-band radar deployed at Oliktok Point, Alaska (70.495°N, 149.883°W). The mean aspect ratio, which is defined by the hydrometeor minor-to-major dimension ratio for a spheroidal particle model, is retrieved as a particle shape parameter. The radar variables used for aspect ratio profile retrievals include reflectivity, differential reflectivity, and the copolar correlation coefficient. The retrievals indicate that hydrometeors with mean aspect ratios below 0.2–0.3 are usually present in regions with air temperatures warmer than approximately from −17° to −15°C, corresponding to a regime that has been shown to be favorable for growth of pristine ice crystals of planar habits. Radar reflectivities corresponding to the lowest mean aspect ratios are generally between −10 and 10 dBZ. For colder temperatures, mean aspect ratios are typically in a range between 0.3 and 0.8. There is a tendency for hydrometeor aspect ratios to increase as particles transition from altitudes in the temperature range from −17° to −15°C toward the ground. This increase is believed to result from aggregation and riming processes that cause particles to become more spherical and is associated with areas demonstrating differential reflectivity decreases with increasing reflectivity. Aspect ratio retrievals at the lowest altitudes are consistent with in situ measurements obtained using a surface-based multiangle snowflake camera. Pronounced gradients in particle aspect ratio profiles are observed at altitudes at which there is a change in the dominant hydrometeor species, as inferred by spectral measurements from a vertically pointing Doppler radar.


1981 ◽  
Vol 62 (5) ◽  
pp. 678-679

Recent technological advances have greatly enhanced the value of weather radar for storm detection, warning, and study. The use of digital computing equipment in association with weather radars now provides techniques for collecting, monitoring, archiving, and presenting the radar measurements in a variety of useful ways and at rates that can keep pace with the acquisition of the data. Developments in Doppler radar technology allow the measurement of air motions (such as tornado vortices) and other features of storm structures. The AMS commends the U.S. Government for its initiative in planning for an advanced weather radar system. The AMS urges governments to place a high priority on the design, procurement, and deployment of the new weather radar systems that incorporate both Doppler and digital processing capabilities.


2017 ◽  
Vol 56 (7) ◽  
pp. 1797-1816 ◽  
Author(s):  
Alexander Ryzhkov ◽  
Sergey Y. Matrosov ◽  
Valery Melnikov ◽  
Dusan Zrnic ◽  
Pengfei Zhang ◽  
...  

AbstractA new methodology for estimating the depolarization ratio (DR) by dual-polarization radars with simultaneous transmission/reception of orthogonally polarized waves together with traditionally measured differential reflectivity ZDR, correlation coefficient ρhυ, and differential phase ΦDP in a single mode of operation is suggested. This depolarization ratio can serve as a proxy for circular depolarization ratio measured by radars with circular polarization. The suggested methodology implies the use of a high-power phase shifter to control the system differential phase on transmission and a special signal processing to eliminate the detrimental impact of differential phase on the estimate of DR. The feasibility of the suggested approach has been demonstrated by retrieving DR from the standard polarimetric variables and the raw in-phase I and quadrature Q components of radar signals and by implementing the scheme on a C-band radar with simultaneous transmission/reception of horizontally and vertically polarized waves. Possible practical implications of using DR include the detection of hail and the determination of its size above the melting layer, the discrimination between various habits of ice aloft, and the possible identification and quantification of riming, which is associated with the presence of supercooled cloud water. Some examples of these applications are presented.


2005 ◽  
Vol 22 (8) ◽  
pp. 1156-1166 ◽  
Author(s):  
Scott E. Giangrande ◽  
Alexander V. Ryzhkov

Abstract In the presence of partial beam blockage (PBB), weather radar measurements can experience significant bias that directly compromises the accuracy of the hydrologic applications. Techniques for the calibration of the radar reflectivity factor Z and differential reflectivity ZDR, measured with dual-polarization weather radars in the presence of partial beam obstruction, are examined in this paper. The proposed ZDR calibration technique utilizes radar measurements of ZDR in light rain and dry aggregated snow at unblocked and blocked elevations. This calibration technique was tested for the National Severe Storms Laboratory’s (NSSL’s) Cimarron radar that suffers from PBB, and a polarimetric prototype of the Weather Surveillance Radar-1988 Doppler (WSR-88D) that does not experience PBB. Results indicate that the ZDR bias that is associated with PBB can be calibrated with an accuracy of 0.2–0.3 dB, provided that the dataset is sufficiently large. Calibration of Z in the presence of PBB is based on the idea of self-consistency among Z, ZDR, and the specific differential phase KDP in rain. The self-consistency calibration of Z from the Cimarron radar is performed following an area–time integral method. Integration is partitioned into small azimuthal sectors to assess the azimuthal modulation of the Z bias. The suggested technique is validated by direct comparisons of reflectivity factors that are measured by the Cimarron radar and the unobstructed operational WSR-88D radar. It is shown that the azimuthal modulation of Z that is caused by PBB is well captured, and the accuracy of the Z calibration is within 2–3 dB.


2018 ◽  
Vol 35 (7) ◽  
pp. 1415-1424 ◽  
Author(s):  
Alamelu Kilambi ◽  
Frédéric Fabry ◽  
Véronique Meunier

AbstractTo satisfy the needs of the meteorological and aeroecological communities wanting a simple but effective way of flagging each other’s unwanted echo for a variety of different operational radar systems, we evaluated the ability of an estimate of depolarization ratio (DR) based on differential reflectivity (ZDR) and copolar correlation coefficient (ρHV) measurements to separate both types of echoes. The method was tested with data collected by S- and C-band radars used in the United States and Canada. The DR-based method that does not require training achieved 96% separation between weather and biological echoes. Since the misclassifications are typically caused by isolated pixels in the melting layer or at the edge of echo patterns, the addition of a despeckling algorithm considerably reduces further these false alarms, resulting in an increase in correct identification approaching 99% on test cases.


2007 ◽  
Vol 46 (10) ◽  
pp. 1682-1698 ◽  
Author(s):  
Julien Delanoë ◽  
A. Protat ◽  
D. Bouniol ◽  
Andrew Heymsfield ◽  
Aaron Bansemer ◽  
...  

Abstract The paper describes an original method that is complementary to the radar–lidar algorithm method to characterize ice cloud properties. The method makes use of two measurements from a Doppler cloud radar (35 or 95 GHz), namely, the radar reflectivity and the Doppler velocity, to recover the effective radius of crystals, the terminal fall velocity of hydrometeors, the ice water content, and the visible extinction from which the optical depth can be estimated. This radar method relies on the concept of scaling the ice particle size distribution. An error analysis using an extensive in situ airborne microphysical database shows that the expected errors on ice water content and extinction are around 30%–40% and 60%, respectively, including both a calibration error and a bias on the terminal fall velocity of the particles, which all translate into errors in the retrieval of the density–diameter and area–diameter relationships. Comparisons with the radar–lidar method in areas sampled by the two instruments also demonstrate the accuracy of this new method for retrieval of the cloud properties, with a roughly unbiased estimate of all cloud properties with respect to the radar–lidar method. This method is being systematically applied to the cloud radar measurements collected over the three-instrumented sites of the European Cloudnet project to validate the representation of ice clouds in numerical weather prediction models and to build a cloud climatology.


2015 ◽  
Vol 32 (5) ◽  
pp. 865-879 ◽  
Author(s):  
Sergey Y. Matrosov

AbstractInformation on ice cloud particle nonsphericity is important for many practical applications ranging from modeling the cloud radiation impact to remote sensing of hydrometeor microphysical properties. Scanning cloud radars, which often measure depolarization ratio as a sole polarization variable, can provide a means for retrieving this information. The applicability of a spheroidal particle model (i.e., a regular ellipsoid that has two principal axes of the same length) is evaluated for describing depolarization properties of ice particles. It is shown that this simple model, which uses an aspect ratio as a single parameter characterizing particle nonsphericity, explains reasonably well the scatter of slant 45° linear depolarization ratio (SLDR) measurements versus direct estimates of the zenith direction backscatter enhancement observed during the Storm Peak Laboratory Cloud Property Validation Experiment (StormVEx) with the scanning W-band cloud radar (SWACR). Observed SLDR elevation angle patterns are also approximated reasonably well by this shape model. It is suggested that an SLDR difference between slant and zenith radar pointing can be used for prospective remote sensing methods of inferring particle aspect ratio from cloud radar depolarization measurements. Depending on mass–size relations, the value of this difference corresponding to median zenith reflectivity enhancement observed during StormVEx relates to aspect ratios of about 0.5 ± 0.2, which generally agrees with typical aspect ratios of ice particles. Expected aspect ratio retrieval uncertainties within the spheroidal shape model and the use of different types of radar depolarization ratio measurements are discussed. A correction for estimated zenith direction reflectivity enhancements due to particle nonsphericity is suggested.


2016 ◽  
Vol 33 (11) ◽  
pp. 2315-2329 ◽  
Author(s):  
Katharina Lengfeld ◽  
Marco Clemens ◽  
Claire Merker ◽  
Hans Münster ◽  
Felix Ament

AbstractThis paper presents a novel, simple method to correct reflectivity measurements of weather radars that operate in attenuation-influenced frequency bands using observations from less attenuated radar systems. In recent years radar systems operating in the X-band frequency range have been developed to provide precipitation fields for areas of special interest in high temporal (≤1 min) and spatial (≤250 m) resolution in complement to nationwide radar networks. However, X-band radars are highly influenced by attenuation. C- and S-band radars typically have coarser resolution (250 m–1 km and 5 min) but are less affected by attenuation.Correcting for attenuation effects in simple (non-Doppler) single-polarized X-band radars remains challenging and is often dependent on restriction parameters, for example, those derived from mountain returns. Therefore, these algorithms are applicable only in limited areas. The method proposed here uses measurements from C-band radars and hence can be applied in all regions covered by nationwide C- (or S-) band radar networks. First, a single scan of X-band radar measurements is used exemplary to identify advantages and disadvantages of the novel algorithm compared to a standard single radar algorithm. The performance of the correction algorithms in different types of precipitation is examined in nine case studies. The proposed method provides very promising results for each type of precipitation. Additionally, it is evaluated in a 5-month comparison with Micro Rain Radar (MRR) observations. The bias between uncorrected X-band radar and MRR data is nearly eliminated by the attenuation correction algorithm, and the RMSE is reduced by 20% while the correlation of ~0.9 between both systems remains nearly constant.


2019 ◽  
Author(s):  
Michael Frech ◽  
John Hubbert

Abstract. It is a challenge to calibrate differential reflectivity ZDR to within 0.1–0.2 dB uncertainty for dual-polarization weather radars that operate operationally 24/7 throughout the year. During operations, a temperature sensitivity of ZDR larger than 0.2 dB over a temperature range of 10°C has been noted. In order to understand the source of the observed ZDR temperature sensitivity, over 2000 dedicated solar box scans, a two dimensional scan 5° azimuth by 8° elevation that encompasses the solar disk, have been made in 2018 from which horizontal (H) and vertical (V) pseudo antenna patterns are calculated. This assessment is carried out using data from the Hohenpeißenberg research radar which is identical to the 17 operational radar systems of the German Meteorological Service (Deutscher Wetterdienst, DWD). ZDR antenna patterns are calculated from the H and V patterns which reveal that the ZDR bias is temperature dependent changing about 0.2 dB over a 12 °C temperature range. One-point calibration results, where a test signal is injected into the antenna crossguide coupler outside the receiver box or into the LNAs, reveal only a very weak temperature sensitivity (


Sign in / Sign up

Export Citation Format

Share Document