Calibration of Dual-Polarization Radar in the Presence of Partial Beam Blockage

2005 ◽  
Vol 22 (8) ◽  
pp. 1156-1166 ◽  
Author(s):  
Scott E. Giangrande ◽  
Alexander V. Ryzhkov

Abstract In the presence of partial beam blockage (PBB), weather radar measurements can experience significant bias that directly compromises the accuracy of the hydrologic applications. Techniques for the calibration of the radar reflectivity factor Z and differential reflectivity ZDR, measured with dual-polarization weather radars in the presence of partial beam obstruction, are examined in this paper. The proposed ZDR calibration technique utilizes radar measurements of ZDR in light rain and dry aggregated snow at unblocked and blocked elevations. This calibration technique was tested for the National Severe Storms Laboratory’s (NSSL’s) Cimarron radar that suffers from PBB, and a polarimetric prototype of the Weather Surveillance Radar-1988 Doppler (WSR-88D) that does not experience PBB. Results indicate that the ZDR bias that is associated with PBB can be calibrated with an accuracy of 0.2–0.3 dB, provided that the dataset is sufficiently large. Calibration of Z in the presence of PBB is based on the idea of self-consistency among Z, ZDR, and the specific differential phase KDP in rain. The self-consistency calibration of Z from the Cimarron radar is performed following an area–time integral method. Integration is partitioned into small azimuthal sectors to assess the azimuthal modulation of the Z bias. The suggested technique is validated by direct comparisons of reflectivity factors that are measured by the Cimarron radar and the unobstructed operational WSR-88D radar. It is shown that the azimuthal modulation of Z that is caused by PBB is well captured, and the accuracy of the Z calibration is within 2–3 dB.

2005 ◽  
Vol 22 (8) ◽  
pp. 1138-1155 ◽  
Author(s):  
Alexander V. Ryzhkov ◽  
Scott E. Giangrande ◽  
Valery M. Melnikov ◽  
Terry J. Schuur

Abstract Techniques for the absolute calibration of radar reflectivity Z and differential reflectivity ZDR measured with dual-polarization weather radars are examined herein. Calibration of Z is based on the idea of self-consistency among Z, ZDR, and the specific differential phase KDP in rain. Extensive spatial and temporal averaging is used to derive the average values of ZDR and KDP for each 1 dB step in Z. Such averaging substantially reduces the standard error of the KDP estimate so the technique can be used for a wide range of rain intensities, including light rain. In this paper, the performance of different consistency relations is analyzed and a new self-consistency methodology is suggested. The proposed scheme substantially reduces the impact of variability in the drop size distribution and raindrop shape on the quality of the Z calibration. The new calibration technique was tested on a large polarimetric dataset obtained during the Joint Polarization Experiment in Oklahoma and yielded an accuracy of Z calibration within 1 dB. Absolute calibration of ZDR is performed using solar measurements at orthogonal polarizations and polarimetric properties of natural targets like light rain and dry aggregated snow that are probed at high elevation angles. Because vertical sounding is prohibited for operational Weather Surveillance Radar-1988 Doppler (WSR-88D) radars because of mechanical constraints, the existing methodology for ZDR calibration is modified for nonzenith elevation angles. It is shown that the required 0.1–0.2-dB accuracy of the ZDR calibration is potentially achievable.


2020 ◽  
Vol 12 (24) ◽  
pp. 4061
Author(s):  
Jeong-Eun Lee ◽  
Sung-Hwa Jung ◽  
Soohyun Kwon

Bright band (BB) characteristics obtained via dual-polarization weather radars elucidate thermodynamic and microphysical processes within precipitation systems. This study identified BB using morphological features from quasi-vertical profiles (QVPs) of polarimetric observations, and their geometric, thermodynamic, and polarimetric characteristics were statistically examined using nine operational S-band weather radars in South Korea. For comparable analysis among weather radars in the network, the calibration biases in reflectivity (ZH) and differential reflectivity (ZDR) were corrected based on self-consistency. The cross-correlation coefficient (ρHV) bias in the weak echo regions was corrected using the signal-to-noise ratio (SNR). First, we analyzed the heights of BBPEAK derived from the ZH as a function of season and compared the heights of BBPEAK derived from the ZH, ZDR, and ρHV. The heights of BBPEAK were highest in the summer season when the surface temperature was high. However, they showed distinct differences depending on the location (e.g., latitude) within the radar network, even in the same season. The height where the size of melting particles was at a maximum (BBPEAK from the ZH) was above that where the oblateness of these particles maximized (BBPEAK from ZDR). The height at which the inhomogeneity of hydometeors was at maximum (BBPEAK from the ρHV) was also below that of BBPEAK from the ZH. Second, BB thickness and relative position of BBPEAK were investigated to characterize the geometric structure of the BBs. The BB thickness increased as the ZH at BBBOTTOM increased, which indicated that large snowflakes melt more slowly than small snowflakes. The geometrical structure of the BBs was asymmetric, since the melting particles spent more time forming the thin shell of meltwater around them, and they rapidly collapsed to form a raindrop at the final stage of melting. Third, the heights of BBTOP, BBPEAK, and BBBOTTOM were compared with the zero-isotherm heights. The dry-temperature zero-isotherm heights were between BBTOP and BBBOTTOM, while the wet-bulb temperature zero-isotherm heights were close to the height of BBPEAK. Finally, we examined the polarimetric observations to understand the involved microphysical processes. The correlation among ZH at BBTOP, BBPEAK, and BBBOTTOM was high (>0.94), and the ZDR at BBBOTTOM was high when the BB’s intensity was strong. This proved that the size and concentration of snowflakes above the BB influence the size and concentration of raindrops below the BB. There was no depression in the ρHV for a weak BB. Finally, the mean profile of the ZH and ZDR depended on the ZH at BBBOTTOM. In conclusion, the growth process of snowflakes above the BB controls polarimetric observations of BB.


2017 ◽  
Vol 34 (9) ◽  
pp. 1885-1906 ◽  
Author(s):  
J. C. Hubbert

AbstractTemporal differential reflectivity bias variations are investigated using the National Center for Atmospheric Research (NCAR) S-band dual-polarization Doppler radar (S-Pol). Using data from the Multi-Angle Snowflake Camera-Ready (MASCRAD) Experiment, S-Pol measurements over extended periods reveal a significant correlation between the ambient temperature at the radar site and the bias. Using radar scans of the sun and the ratio of cross-polar powers, the components of the radar that cause the variation of the bias are identified. It is postulated that the thermal expansion of the antenna is likely the primary cause of the observed bias variation. The cross-polar power (CP) calibration technique, which is based on the solar and cross-polar power measurements, is applied to data from the Plains Elevated Convection at Night (PECAN) field project. The bias from the CP technique is compared to vertical-pointing bias measurements, and the uncertainty of the bias estimates is given. An algorithm is derived to correct the radar data for the time- and temperature-varying bias. Bragg scatter measurements are used to corroborate the CP technique bias measurements.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 97 ◽  
Author(s):  
Sergey Y. Matrosov

A polarimetric radar method to estimate mean shapes of ice hydrometeors was applied to several snowfall and ice cloud events observed by operational and research weather radars. The hydrometeor shape information is described in terms of their aspect ratios, r, which represent the ratio of particle minor and major dimensions. The method is based on the relations between depolarization ratio (DR) estimates and aspect ratios. DR values, which are a proxy for circular depolarization ratio, were reconstructed from radar variables of reflectivity factor, Ze, differential reflectivity, ZDR, and copolar correlation coefficient ρhv, which are available from radar systems operating in either simultaneous or alternate transmutation of horizontally and vertically polarized signals. DR-r relations were developed for retrieving aspect ratios and their sensitivity to different assumptions and model uncertainties were discussed. To account for changing particle bulk density, which is a major contributor to the retrieval uncertainty, an approach is suggested to tune the DR-r relations using reflectivity-based estimates of characteristic hydrometeor size. The analyzed events include moderate snowfall observed by an operational S-band weather radar and a precipitating ice cloud observed by a scanning Ka-band cloud radar at an Arctic location. Uncertainties of the retrievals are discussed.


2006 ◽  
Vol 23 (12) ◽  
pp. 1668-1681 ◽  
Author(s):  
Eugenio Gorgucci ◽  
V. Chandrasekar ◽  
Luca Baldini

Abstract New algorithms for rain attenuation correction of reflectivity factor and differential reflectivity are presented. Following the methodology suggested for the first time by Gorgucci et al., the new algorithms are developed based on the self-consistency principle, describing the interrelation between polarimetric measurements along the rain medium. There is an increasing interest in X-band radar systems, owing to the early success of the attenuation-correction procedures as well as the initiative of the Center for Collaborative Adaptive Sensing of the Atmosphere to deploy X-band radars in a networked fashion. In this paper, self-consistent algorithms for correcting attenuation and differential attenuation are developed. The performance of the algorithms for application to X-band dual-polarization radars is evaluated extensively. The evaluation is conducted based on X-band dual-polarization observations generated from S-band radar measurements. Evaluation of the new self-consistency algorithms shows significant improvement in performance compared to the current class of algorithms. In the case that reflectivity and differential reflectivity are calibrated between ±1 and ±0.2 dB, respectively, the new algorithms can estimate both attenuation and differential attenuation with less than 10% bias and 15% random error. In addition, the attenuation-corrected reflectivity and differential reflectivity are within 1–0.2 dB 96% and 99% of the time, respectively, demonstrating the good performance.


2006 ◽  
Vol 63 (11) ◽  
pp. 3033-3044 ◽  
Author(s):  
Eugenio Gorgucci ◽  
Luca Baldini ◽  
V. Chandrasekar

Abstract In a previous study, Gorgucci et al. showed the potential advantage of using together polarimetric radar measurements of reflectivity factor, differential reflectivity, and specific differential propagation phase, in order to gather information about the calibration of radar systems. Scarchilli et al. generalized this concept in the self-consistency principle, which stated that, given a drop-shape model to describe the form of raindrops, the corresponding radar measurements are constrained on this three-dimensional surface. In this work the self-consistency principle is collapsed onto a two-dimensional domain defined by the variables: 1) the ratio between specific differential phase and reflectivity factor, and 2) differential reflectivity. In this space the scatter of drop size distribution (DSD) variability is minimized in such a way that drop-shape variability shows up. This methodology is used to observe for the first time the predominant shape of raindrops directly from the radar measurements. The radar polarimetric data were collected in two different climatological regions as central Florida and northern Italy. The significant result shows that the underlying mean axis ratio approaches the model established by Pruppacher and Beard, and the relationship described by Beard and Chuang forms a sort of border for the sphericity of the drop shape.


2011 ◽  
Vol 28 (2) ◽  
pp. 181-196 ◽  
Author(s):  
David A. Marks ◽  
David B. Wolff ◽  
Lawrence D. Carey ◽  
Ali Tokay

Abstract The dual-polarization weather radar on the Kwajalein Atoll in the Republic of the Marshall Islands (KPOL) is one of the only full-time (24/7) operational S-band dual-polarimetric (DP) radars in the tropics. Through the use of KPOL DP and disdrometer measurements from Kwajalein, quality control (QC) and reflectivity calibration techniques were developed and adapted for use. Data studies in light rain show that KPOL DP measurements are of sufficient quality for these applications. While the methodology for the development of such applications is well documented, the tuning of specific algorithms to the particular regime and observed raindrop size distributions requires a comprehensive testing and adjustment period. Presented are algorithm descriptions and results from five case studies in which QC and absolute reflectivity calibration were performed and assessed. Also described is a unique approach for calibrating the differential reflectivity field when vertically pointing observations are not available. Results show the following: 1) DP-based QC provides superior results compared to the legacy Tropical Rainfall Measuring Mission (TRMM) QC algorithm (based on height and reflectivity thresholds), and 2) absolute reflectivity calibration can be performed using observations of light rain via a published differential phase–based integration technique; results are within ±1 dB compared to independent measurements. Future extension of these algorithms to upgraded Weather Surveillance Radar-1988 Doppler (WSR-88D) polarization diverse radars will benefit National Aeronautics and Space Administration’s (NASA’s) Precipitation Measurement Missions (PMM) validation programs.


2018 ◽  
Vol 57 (3) ◽  
pp. 755-775 ◽  
Author(s):  
Elizabeth J. Thompson ◽  
Steven A. Rutledge ◽  
Brenda Dolan ◽  
Merhala Thurai ◽  
V. Chandrasekar

AbstractDual-polarization radar rainfall estimation relationships have been extensively tested in continental and subtropical coastal rain regimes, with little testing over tropical oceans where the majority of rain on Earth occurs. A 1.5-yr Indo-Pacific warm pool disdrometer dataset was used to quantify the impacts of tropical oceanic drop-size distribution (DSD) variability on dual-polarization radar variables and their resulting utility for rainfall estimation. Variables that were analyzed include differential reflectivity Zdr; specific differential phase Kdp; reflectivity Zh; and specific attenuation Ah. When compared with continental or coastal convection, tropical oceanic Zdr and Kdp values were more often of low magnitude (<0.5 dB, <0.3° km−1) and Zdr was lower for a given Kdp or Zh, consistent with observations of tropical oceanic DSDs being dominated by numerous, small, less-oblate drops. New X-, C-, and S-band R estimators were derived: R(Kdp), R(Ah), R(Kdp, ζdr), R(z, ζdr), and R(Ah, ζdr), which use linear versions of Zdr and Zh, namely ζdr and z. Except for R(Kdp), convective/stratiform partitioning was unnecessary for these estimators. All dual-polarization estimators outperformed updated R(z) estimators derived from the same dataset. The best-performing estimator was R(Kdp, ζdr), followed by R(Ah, ζdr) and R(z, ζdr). The R error was further reduced in an updated blended algorithm choosing between R(z), R(z, ζdr), R(Kdp), and R(Kdp, ζdr) depending on Zdr > 0.25 dB and Kdp > 0.3° km−1 thresholds. Because of these thresholds and the lack of hail, R(Kdp) was never used. At all wavelengths, R(z) was still needed 43% of the time during light rain (R < 5 mm h−1, Zdr < 0.25 dB), composing 7% of the total rain volume. As wavelength decreased, R(Kdp, ζdr) was used more often, R(z, ζdr) was used less often, and the blended algorithm became increasingly more accurate than R(z).


2014 ◽  
Vol 53 (6) ◽  
pp. 1618-1635 ◽  
Author(s):  
Elisa Adirosi ◽  
Eugenio Gorgucci ◽  
Luca Baldini ◽  
Ali Tokay

AbstractTo date, one of the most widely used parametric forms for modeling raindrop size distribution (DSD) is the three-parameter gamma. The aim of this paper is to analyze the error of assuming such parametric form to model the natural DSDs. To achieve this goal, a methodology is set up to compare the rain rate obtained from a disdrometer-measured drop size distribution with the rain rate of a gamma drop size distribution that produces the same triplets of dual-polarization radar measurements, namely reflectivity factor, differential reflectivity, and specific differential phase shift. In such a way, any differences between the values of the two rain rates will provide information about how well the gamma distribution fits the measured precipitation. The difference between rain rates is analyzed in terms of normalized standard error and normalized bias using different radar frequencies, drop shape–size relations, and disdrometer integration time. The study is performed using four datasets of DSDs collected by two-dimensional video disdrometers deployed in Huntsville (Alabama) and in three different prelaunch campaigns of the NASA–Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) ground validation program including the Hydrological Cycle in Mediterranean Experiment (HyMeX) special observation period (SOP) 1 field campaign in Rome. The results show that differences in rain rates of the disdrometer DSD and the gamma DSD determining the same dual-polarization radar measurements exist and exceed those related to the methodology itself and to the disdrometer sampling error, supporting the finding that there is an error associated with the gamma DSD assumption.


2005 ◽  
Vol 6 (4) ◽  
pp. 532-549 ◽  
Author(s):  
Marc Berenguer ◽  
Carles Corral ◽  
Rafael Sánchez-Diezma ◽  
Daniel Sempere-Torres

Abstract Nowcasting precipitation is a key element in the anticipation of floods in warning systems. In this framework, weather radars are very useful because of the high resolution of their measurements both in time and space. The aim of this study is to assess the performance of a recently proposed nowcasting technique (S-PROG) from a hydrological point of view in a Mediterranean environment. S-PROG is based on the advection of weather radar fields according to the motion field derived with an algorithm based on tracking radar echoes by correlation (TREC), and it has the ability of filtering out the most unpredictable scales of these fields as the forecasting time increases. Validation of this nowcasting technique was done from two different perspectives: (i) comparing forecasted precipitation fields against radar measurements, and (ii) by means of a distributed rainfall runoff model, comparing hydrographs simulated with a hydrological model using rainfall fields forecasted by S-PROG against hydrographs generated with the model using the entire series of radar measurements. In both cases, results obtained by a simpler nowcasting technique are used as a reference to evaluate improvements. Validation showed that precipitation fields forecasted with S-PROG seem to be better than fields forecasted using simpler techniques. Additionally, hydrological validation led the authors to point out that the use of radar-based nowcasting techniques allows the anticipation window in which flow estimates are forecasted with enough quality to be sensibly extended.


Sign in / Sign up

Export Citation Format

Share Document