scholarly journals Ambient Non-Methane Hydrocarbons (NMHCs) Measurements in Baoding, China: Sources and Roles in Ozone Formation

Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1205
Author(s):  
Ming Wang ◽  
Kun Hu ◽  
Wentai Chen ◽  
Xueyong Shen ◽  
Wenjing Li ◽  
...  

Ambient non-methane hydrocarbons (NMHCs) are important precursors of ozone (O3) and secondary organic aerosol (SOA). Online and offline measurements of NMHCs were conducted during September 2015 in Baoding, Hebei province of China, in order to investigate their sources and roles in ozone formation. Average levels of total NMHCs online measured at the urban site were 44.5 ± 26.7 ppb. Aromatics was the largest contributor to NMHCs levels and OH reactivity, with fraction of 27.1% and 35.9%, respectively. Based on offline measurements at eight sites, we found that toluene, ethylbenzene, and m,p-xylene displayed the highest level at the site close to automobile manufacturing factories, followed by downwind receptor sites and other sites. Positive matrix factorization (PMF) model was then used to analyze NMHCs sources. Four factors were identified, including traffic-related emission, automobile manufacturing coating, biogenic emission, and NG/LPG usage and background. Average relative contribution of automobile manufacturing coating to NMHCs levels during the entire online measurement period was 33.4%, and this value increased to 42% during two O3 pollution days. Sensitivity of O3 formation to NMHCs and NOX during an O3 pollution episode were analyzed using a box model based on observations. Relative incremental reactivity (RIR) results suggested that O3 formation was in NOx-titration regime (i.e., highly NMHCs-limited regime). Further scenario analyses on relationship of O3 formation with reduction of NOx and anthropogenic NMHCs (AHC) indicated that AHC and NOx should be reduced by a ratio greater than two and three to achieve 5% and 10% O3 control objectives, respectively. The largest RIR value for anthropogenic NMHC species was from xylenes, which were also an important contributor to SOA formation and dominantly from sources related to automobile manufacturing coating and traffic emission. This means reducing NMHCs emission from automobile manufacturing coating and traffic emission should be given priority for synergetic control of O3 and PM2.5.

2014 ◽  
Vol 14 (12) ◽  
pp. 5871-5891 ◽  
Author(s):  
M. Wang ◽  
M. Shao ◽  
W. Chen ◽  
B. Yuan ◽  
S. Lu ◽  
...  

Abstract. Understanding the sources of volatile organic compounds (VOCs) is essential for ground-level ozone and secondary organic aerosol (SOA) abatement measures. We made VOC measurements at 27 sites and online observations at an urban site in Beijing from July 2009 to January 2012. Based on these measurement data, we determined the spatial and temporal distribution of VOCs, estimated their annual emission strengths based on their emission ratios relative to carbon monoxide (CO), and quantified the relative contributions of various sources using the chemical mass balance (CMB) model. These results from ambient measurements were compared with existing emission inventories to evaluate the spatial distribution, species-specific emissions, and source structure of VOCs in Beijing. The measured VOC distributions revealed a hotspot in the southern suburban area of Beijing, whereas current emission inventories suggested that VOC emissions were concentrated in downtown areas. Compared with results derived from ambient measurements, the annual inventoried emissions of oxygenated VOC (OVOC) species and C2–C4 alkanes may be underestimated, while the emissions of styrene and 1,3-butadiene may be overestimated by current inventories. Source apportionment using the CMB model identified vehicular exhaust as the most important VOC source, with the relative contribution of 49%, in good agreement with the 40–51% estimated by emission inventories. The relative contribution of paint and solvent utilization obtained from the CMB model was 14%, significantly lower than the value of 32% reported by one existing inventory. Meanwhile, the relative contribution of liquefied petroleum gas (LPG) usage calculated using the CMB model was 6%, whereas LPG usage contribution was not reported by current emission inventories. These results suggested that VOC emission strengths in southern suburban area of Beijing, annual emissions of C2–C4 alkanes, OVOCs and some alkenes, and the contributions of solvent and paint utilization and LPG usage in current inventories all require significant revisions.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 512
Author(s):  
Tingting Li ◽  
Jun Li ◽  
Hongxing Jiang ◽  
Duohong Chen ◽  
Zheng Zong ◽  
...  

To accurately apportion the sources of aerosols, a combined method of positive matrix factorization (PMF) and the Bayesian mixing model was applied in this study. The PMF model was conducted to identify the sources of PM2.5 in Guangzhou. The secondary inorganic aerosol source was one of the seven main sources in Guangzhou. Based on stable isotopes of oxygen and nitrogen (δ15N-NO3− and δ18O-NO3−), the Bayesian mixing model was performed to apportion the source of NO3− to coal combustion, traffic emission and biogenic source. Then the secondary aerosol source was subdivided into three sources according to the discrepancy in source apportionment of NO3− between PMF and Bayesian mixing model results. After secondary aerosol assignment, the six main sources of PM2.5 were traffic emission (30.6%), biomass burning (23.1%), coal combustion (17.7%), ship emission (14.0%), biomass boiler (9.9%) and industrial emission (4.7%). To assess the source apportionment results, fossil/non-fossil source contributions to organic carbon (OC) and element carbon (EC) inferred from 14C measurements were compared with the corresponding results in the PMF model. The results showed that source distributions of EC matched well between those two methods, indicating that the PMF model captured the primary sources well. Probably because of the lack of organic molecular markers to identify the biogenic source of OC, the non-fossil source contribution to OC in PMF results was obviously lower than 14C results. Thus, an indicative organic molecular tracer should be used to identify the biogenic source when accurately apportioning the sources of aerosols, especially in the region with high plant coverage or intense biomass burning.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 326
Author(s):  
Chih-Chung Chang ◽  
Hwa-Kwang Yak ◽  
Jia-Lin Wang

Continuous measurements of ozone and its precursors were performed at sites in two Chinese megacities, i.e., an urban site in Beijing and a suburban site in the Pearl River Delta (PRD). At both sites, the total oxidants (O3 + NO2) varied with the ratio of ethylbenzene to m,p-xylenes, which serves as an indicator of photochemical aging. An observation-based method (OBM) was derived for calculating the photochemical consumption of individual non-methane hydrocarbons (NMHCs) based on the observed NMHC concentrations and the ratio of ethylbenzene to m,p-xylenes. The results show a strong correlation between the oxidant level and the derived consumption of precursors at the two sites (R2 = 0.81 for the PRD site and R2 = 0.83 for the Beijing site), demonstrating a strong cause–effect relationship. The relative “consumption efficiency” among NMHCs was calculated based on the integrated amount of hydroxyl radicals derived from the ratio of ethylbenzene to xylenes. Thus, the percent contributions to ozone formation from each individual NMHC can be calculated. This concept of consumption is purely observation-based and provides an easy way to bypass complicated modeling and the necessity of knowing instantaneous concentrations of hydroxyl radicals, which are highly illusive in nature.


2007 ◽  
Vol 102 (6) ◽  
pp. 2217-2226 ◽  
Author(s):  
Dror Ofir ◽  
Pierantonio Laveneziana ◽  
Katherine A. Webb ◽  
Denis E. O'Donnell

The main purpose of this study was to examine the relative contribution of respiratory mechanical factors and the increased metabolic cost of locomotion to exertional breathlessness in obese women. We examined the relationship of intensity of breathlessness to ventilation (V̇e) when exertional oxygen uptake (V̇o2) of obesity was minimized by cycle exercise. Eighteen middle-aged (54 ± 8 yr, mean ± SD) obese [body mass index (BMI) 40.2 ± 7.8 kg/m2] and 13 age-matched normal-weight (BMI 23.3 ± 1.7 kg/m2) women were studied. Breathlessness at higher submaximal cycle work rates was significantly increased (by ≥1 Borg unit) in obese compared with normal-weight women, in association with a 35–45% increase in V̇e and a higher metabolic cost of exercise. Obese women demonstrated greater resting expiratory flow limitation, reduced resting end-expiratory lung volume (EELV)(by 20%), and progressive increases in dynamic EELV during exercise: peak inspiratory capacity (IC) decreased by 16% (0.39 liter) of the resting value. V̇e/V̇o2 slopes were unchanged in obesity. Breathlessness ratings at any given V̇e or V̇o2 were not increased in obesity, suggesting that respiratory mechanical factors were not contributory. Our results indicate that in obese women, recruitment of resting IC and dynamic increases in EELV with exercise served to optimize operating lung volumes and to attenuate expiratory flow limitation so as to accommodate the increased ventilatory demand without increased breathlessness.


2015 ◽  
Vol 733 ◽  
pp. 846-849
Author(s):  
Jian Jun Yang

According to the several problems existing in the supply logistics of the traditional automotive manufacturing logistics, the optimization solution to the supply logistics based on the RFID technology of internet of things has been proposed. The influence of the indication of the traditional supply logistics on the whole automotive manufacturing logistics was described in details. In terms of the core element, the business logic thinking and implement method of the RFID technology, applied in each connection relationship of the supply logistics, the optimization of the supply logistics structure was then achieved and the procedure of the optimized supply logistics was plot, which has also been analyzed specifically to indicate the direction for future study.


2009 ◽  
Vol 9 (19) ◽  
pp. 7387-7396 ◽  
Author(s):  
T. Aalto ◽  
M. Lallo ◽  
J. Hatakka ◽  
T. Laurila

Abstract. Atmospheric hydrogen (H2) mixing ratios were observed over a one year period from summer 2007 to 2008 in Helsinki, Finland. Relatively stable background values of hydrogen were occasionally observed at the site, with minimum in October and maximum between March and May. High hydrogen mixing ratios occurred simultaneously with high carbon monoxide (CO) values and coincided with high traffic flow periods. Carbon monoxide and radon (222Rn) were continuously monitored at the same site and they were used in estimation of the hydrogen emissions from traffic. The morning rush hour slope of ΔH2/ΔCO was in average 0.43±0.03 ppb (H2)/ppb (CO). After correction due to soil deposition of H2 the slope was 0.49±0.07 ppb (H2)/ppb (CO). Using this slope and CO emission statistics, a road traffic emission of about 260 t (H2)/year was estimated for Helsinki in 2007.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jinfeng Yuan ◽  
Li Li

Recommender system is emerging as a powerful and popular tool for online information relevant to a given user. The traditional recommendation system suffers from the cold start problem and the data sparsity problem. Many methods have been proposed to solve these problems, but few can achieve satisfactory efficiency. In this paper, we present a method which combines the trust diffusion (DiffTrust) algorithm and the probabilistic matrix factorization (PMF). DiffTrust is first used to study the possible diffusions of trust between various users. It is able to make use of the implicit relationship of the trust network, thus alleviating the data sparsity problem. The probabilistic matrix factorization (PMF) is then employed to combine the users' tastes with their trusted friends' interests. We evaluate the algorithm on Flixster, Moviedata, and Epinions datasets, respectively. The experimental results show that the recommendation based on our proposed DiffTrust + PMF model achieves high performance in terms of the root mean square error (RMSE), Recall, andFMeasure.


Sign in / Sign up

Export Citation Format

Share Document