scholarly journals Wet Inorganic Nitrogen Deposition at the Daheitin Reservoir in North China: Temporal Variation, Sources, and Biomass Burning Influences

Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1260
Author(s):  
Leixiang Wu ◽  
Xiaobo Liu ◽  
Kun Li ◽  
Wanyun Xu ◽  
Wei Huang ◽  
...  

Atmospheric nitrogen deposition is of great concern to both air quality and the ecosystem, particularly in northern China, which covers one-quarter of China’s cultivated land and has many heavily air polluted cities. To understand the characteristics of wet N deposition at rural sites in northern China, one-year wet deposition samples were collected in the Daheitin reservoir region. Due to the intense emissions of gaseous nitrogen compounds from heating activities during cold seasons and distinct dilution effects under different rainfall intensities and frequencies, the volume weighted mean concentrations of wet N deposition showed higher levels in dry seasons but lower levels in wet seasons. In contrast, the wet N deposition rates varied consistently with precipitation, i.e., high during the wet season and lower during the dry season. The annual wet deposition rate of total inorganic ions (the sum of NO3−–N and NH4+–N) at the rural site in North China from July 2019 to June 2020 was observed at 18.9 kg N ha−1 yr−1, still remained at a relatively high level. In addition, biomass burning activities are ubiquitous in China, especially in northern China; however, studies on its impact on wet N deposition are limited. Non-sea salt potassium ion (nss-K+) was employed as a molecular tracer to investigate the characteristics of biomass burning activities as well as their impact on the chemical properties of wet N deposition. Three precipitation events with high nss-K+ levels were captured during the harvest season (June to July). The variations in the patterns of nss-K+, deposited N species, and ratios of nss-K+ to nitrogen species as well as their relationships all indicated that biomass burning emissions contributed remarkably to NO3−–N but had a minor influence on NH4+–N.

2019 ◽  
Vol 19 (19) ◽  
pp. 12221-12234 ◽  
Author(s):  
Yunhua Chang ◽  
Yan-Lin Zhang ◽  
Jiarong Li ◽  
Chongguo Tian ◽  
Linlin Song ◽  
...  

Abstract. Predicting tropospheric cloud formation and subsequent nutrient deposition relies on understanding the sources and processes affecting aerosol constituents of the atmosphere that are preserved in cloud water. However, this challenge is difficult to address quantitatively based on the sole use of bulk chemical properties. Nitrogenous aerosols, mainly ammonium (NH4+) and nitrate (NO3-), play a particularly important role in tropospheric cloud formation. While dry and wet (mainly rainfall) deposition of NH4+ and NO3- are regularly assessed, cloud water deposition is often underappreciated. Here we collected cloud water samples at the summit of Mt. Tai (1545 m above sea level) in eastern China during a long-lasting biomass burning (BB) event and simultaneously measured for the first time the isotopic compositions (mean ±1σ) of cloud water nitrogen species (δ15N-NH4+ = −6.53 ‰ ± 4.96 ‰, δ15N-NO3- = −2.35 ‰ ± 2.00 ‰, δ18O-NO3- = 57.80 ‰ ± 4.23 ‰), allowing insights into their sources and potential transformation mechanism within the clouds. Large contributions of BB to the cloud water NH4+ (32.9 % ± 4.6 %) and NO3- (28.2 % ± 2.7 %) inventories were confirmed through a Bayesian isotopic mixing model, coupled with our newly developed computational quantum chemistry module. Despite an overall reduction in total anthropogenic NOx emission due to effective emission control actions and stricter emission standards for vehicles, the observed cloud δ15N-NO3- values suggest that NOx emissions from transportation may have exceeded emissions from coal combustion. δ18O-NO3- values imply that the reaction of OH with NO2 is the dominant pathway of NO3- formation (57 % ± 11 %), yet the contribution of heterogeneous hydrolysis of dinitrogen pentoxide was almost as important (43 % ± 11 %). Although the limited sample set used here results in a relatively large uncertainty with regards to the origin of cloud-associated nitrogen deposition, the high concentrations of inorganic nitrogen imply that clouds represent an important source of nitrogen, especially for nitrogen-limited ecosystems in remote areas. Further simultaneous and long-term sampling of aerosol, rainfall, and cloud water is vital for understanding the anthropogenic influence on nitrogen deposition in the study region.


2006 ◽  
Vol 6 (2) ◽  
pp. 447-469 ◽  
Author(s):  
I. Trebs ◽  
L. L. Lara ◽  
L. M. M. Zeri ◽  
L. V. Gatti ◽  
P. Artaxo ◽  
...  

Abstract. The input of nitrogen (N) to ecosystems has increased dramatically over the past decades. While total (wet + dry) N deposition has been extensively determined in temperate regions, only very few data sets of N wet deposition exist for tropical ecosystems, and moreover, reliable experimental information about N dry deposition in tropical environments is lacking. In this study we estimate dry and wet deposition of inorganic N for a remote pasture site in the Amazon Basin based on in-situ measurements. The measurements covered the late dry (biomass burning) season, a transition period and the onset of the wet season (clean conditions) (12 September to 14 November 2002) and were a part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate) 2002 campaign. Ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), nitrogen dioxide (NO2), nitric oxide (NO), ozone (O3), aerosol ammonium (NH4+) and aerosol nitrate (NO3-) were measured in real-time, accompanied by simultaneous meteorological measurements. Dry deposition fluxes of NO2 and HNO3 are inferred using the ''big leaf multiple resistance approach'' and particle deposition fluxes are derived using an established empirical parameterization. Bi-directional surface-atmosphere exchange fluxes of NH3 and HONO are estimated by applying a ''canopy compensation point model''. N dry and wet deposition is dominated by NH3 and NH4+, which is largely the consequence of biomass burning during the dry season. The grass surface appeared to have a strong potential for daytime NH3 emission, owing to high canopy compensation points, which are related to high surface temperatures and to direct NH3 emissions from cattle excreta. NO2 also significantly accounted for N dry deposition, whereas HNO3, HONO and N-containing aerosol species were only minor contributors. Ignoring NH3 emission from the vegetation surface, the annual net N deposition rate is estimated to be about −11 kgN ha-1 yr-1. If on the other hand, surface-atmosphere exchange of NH3 is considered to be bi-directional, the annual net N budget at the pasture site is estimated to range from −2.15 to −4.25 kgN ha-1 yr-1.


2015 ◽  
Vol 15 (13) ◽  
pp. 18365-18405 ◽  
Author(s):  
W. Xu ◽  
X. S. Luo ◽  
Y. P. Pan ◽  
L. Zhang ◽  
A. H. Tang ◽  
...  

Abstract. Global reactive nitrogen (Nr) deposition to terrestrial ecosystems has increased dramatically since the industrial revolution. This is especially true in recent decades in China due to continuous economic growth. However, there are no comprehensive reports of both measured dry and wet Nr deposition across China. We therefore conducted a multiple-year study during the period mainly from 2010 to 2014 to monitor atmospheric concentrations of five major Nr species of gaseous NH3, NO2 and HNO3, and inorganic nitrogen (NH4+ and NO3−) in both particles and precipitation, based on a Nationwide Nitrogen Deposition Monitoring Network (NNDMN, covering 43 sites) in China. Wet deposition fluxes of Nr species were measured directly; dry deposition fluxes were estimated using airborne concentration measurements and inferential models. Our observations reveal large spatial variations of atmospheric Nr concentrations and dry and wet Nr deposition. The annual average concentrations (1.3–47.0 μg N m−3) and dry plus wet deposition fluxes (2.9–75.2 kg N ha−1 yr−1) of inorganic Nr species ranked by region as North China > Southeast China > Southwest China > Northeast China > Northwest China > the Tibetan Plateau or by land use as urban > rural > background sites, reflecting the impact of anthropogenic Nr emission. Average dry and wet N deposition fluxes were 18.5 and 19.3 kg N ha−1 yr−1, respectively, across China, with reduced N deposition dominating both dry and wet deposition. Our results suggest atmospheric dry N deposition is equally important to wet N deposition at the national scale and both deposition forms should be included when considering the impacts of N deposition on environment and ecosystem health.


2005 ◽  
Vol 5 (3) ◽  
pp. 3131-3189 ◽  
Author(s):  
I. Trebs ◽  
L. L. Lara ◽  
L. M. M. Zeri ◽  
L. V. Gatti ◽  
P. Artaxo ◽  
...  

Abstract. The input of nitrogen (N) to ecosystems has increased dramatically over the past decades. While total N deposition (wet + dry) has been extensively determined in temperate regions, only very few data sets exist about wet N deposition in tropical ecosystems, and moreover, experimental information about dry N deposition in tropical environments is lacking. In this study we estimate dry and wet deposition of inorganic N for a remote pasture site in the Amazon Basin based on in-situ measurements. The measurements covered the late dry (biomass burning) season, a transition period and the onset of the wet season (clean conditions) (12 September to 14 November 2002, LBA-SMOCC). Ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), nitrogen dioxide (NO2), nitric oxide (NO), ozone (O3), aerosol ammonium (NH4+) and aerosol nitrate (NO3-) were measured in real-time, accompanied by simultaneous (micro-)meteorological measurements. Dry deposition fluxes of NO2 and HNO3 are inferred using the ''big leaf multiple resistance approach'' and particle deposition fluxes are derived using an established empirical parameterization. Bi-directional surface-atmosphere exchange fluxes of NH3 and HONO are estimated by applying a ''canopy compensation point model''. Dry and wet N deposition is dominated by NH3 and NH4+, which is largely the consequence of biomass burning during the dry season. The grass surface appeared to have a strong potential for daytime NH3 (re-)emission, owing to high canopy compensation points, which are related to high surface temperatures and to direct NH3 emissions from cattle excreta. NO2 also significantly accounted for dry N deposition, whereas HNO3, HONO and N-containing aerosol species were only minor contributors. We estimated a total (dry + wet) N deposition of 7.3–9.8 kgN ha-1 yr-1 to the tropical pasture site, whereof 2–4.5 kgN ha-1 yr-1 are attributed to dry N deposition and ~5.3 kgN ha-1 yr-1 to wet N deposition. Our estimate exceeds total (wet + dry) N deposition to tropical ecosystems predicted by global chemistry and transport models by at least factor of two.


2021 ◽  
Vol 21 (4) ◽  
pp. 3181-3192
Author(s):  
Linlin Liang ◽  
Guenter Engling ◽  
Chang Liu ◽  
Wanyun Xu ◽  
Xuyan Liu ◽  
...  

Abstract. Biomass burning activities are ubiquitous in China, especially in northern China, where there is a large rural population and winter heating custom. Biomass burning tracers (i.e., levoglucosan, mannosan and potassium (K+)), as well as other chemical components, were quantified at a rural site (Gucheng, GC) in northern China from 15 October to 30 November, during a transition heating season, when the field burning of agricultural residue was becoming intense. The measured daily average concentrations of levoglucosan, mannosan and K+ in PM2.5 (particulate matter with aerodynamic diameters less than 2.5 µm) during this study were 0.79 ± 0.75, 0.03 ± 0.03 and 1.52 ± 0.62 µg m−3, respectively. Carbonaceous components and biomass burning tracers showed higher levels during nighttime than daytime, while secondary inorganic ions were enhanced during daytime. An episode with high levels of biomass burning tracers was encountered at the end of October 2016, with high levoglucosan at 4.37 µg m−3. Based on the comparison of chemical components during different biomass burning pollution periods, it appeared that biomass combustion can obviously elevate carbonaceous component levels, whereas there was essentially no effect on secondary inorganic aerosols in the ambient air. Moreover, the levoglucosan / mannosan ratios during different biomass burning pollution periods remained at high values (in the range of 18.3–24.9); however, the levoglucosan / K+ ratio was significantly elevated during the intensive biomass burning pollution period (1.67) when air temperatures were decreasing, which was substantially higher than in other biomass burning periods (averaged at 0.47).


2004 ◽  
Vol 4 (4) ◽  
pp. 967-987 ◽  
Author(s):  
I. Trebs ◽  
F. X. Meixner ◽  
J. Slanina ◽  
R. Otjes ◽  
P. Jongejan ◽  
...  

Abstract. We measured the mixing ratios of ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), hydrochloric acid (HCl), sulfur dioxide (SO2 and the corresponding water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), chloride (Cl- and sulfate (SO42-), and their diel and seasonal variations at a pasture site in the Amazon Basin (Rondônia, Brazil). This study was conducted within the framework of LBA-SMOCC (Large Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was performed from 12 September to 14 November 2002, extending from the dry season (extensive biomass burning activity), through the transition period to the wet season (background conditions). Measurements were made continuously using a wet-annular denuder (WAD) in combination with a Steam-Jet Aerosol Collector (SJAC) followed by suitable on-line analysis. A detailed description and verification of the inlet system for simultaneous sampling of soluble gases and aerosol compounds is presented. Overall measurement uncertainties of the ambient mixing ratios usually remained below 15%. The limit of detection (LOD) was determined for each single data point measured during the field experiment. Median LOD values (3σ-definition) were ≤0.015ppb for acidic trace gases and aerosol anions and ≤0.118ppb for NH3 and aerosol NH4+. Mixing ratios of acidic trace gases remained below 1ppb throughout the measurement period, while NH3 levels were an order of magnitude higher. Accordingly, mixing ratios of NH4+ exceeded those of other inorganic aerosol contributors by a factor of 4 to 10. During the wet season, mixing ratios decreased by nearly a factor of 3 for all compounds compared to those observed when intensive biomass burning took place. Additionally, N-containing gas and aerosol species featured pronounced diel variations. This is attributed to strong relative humidity and temperature variations between day and night as well as to changing photochemistry and stability conditions of the planetary boundary layer. HONO exhibited a characteristic diel cycle with high mixing ratios at nighttime and was not completely depleted by photolysis during daylight hours.


2012 ◽  
Vol 12 (11) ◽  
pp. 28661-28703 ◽  
Author(s):  
S. L. Mkoma ◽  
K. Kawamura ◽  
P. Fu

Abstract. Atmospheric aerosol samples of PM2.5 and PM10 were collected at a rural site in Tanzania in 2011 during wet and dry seasons and they were analysed for carbonaceous components, levoglucosan and water-soluble inorganic ions. The mean mass concentrations of PM2.5 and PM10 were 28.2±6.4 μg m−3 and 47±8.2 μg m−3 in wet season, and 39.1±9.8 μg m−3 and 61.4±19.2 μg m−3 in dry season, respectively. Total carbon (TC) accounted for 16–19% of the PM2.5 mass and 13–15% of the PM10 mass. On average, 85.9 to 88.7% of TC in PM2.5 and 87.2 to 90.1% in PM10 was organic carbon (OC), of which 67–72% and 63% was found to be water-soluble organic carbon (WSOC) in PM2.5 and PM10, respectively. Water-soluble potassium (K+) and sulphate (SO42−) in PM2.5 and, sodium (Na+) and SO42− in PM10 were the dominant ionic species. We found, that concentrations of biomass burning tracers (levoglucosan and mannosan) well correlated with non-sea-salt-K+, WSOC and OC in the aerosols from Tanzania, East Africa. Mean contributions of levoglucosan to OC ranged between 3.9–4.2% for PM2.5 and 3.5–3.8% for PM10. This study demonstrates that emissions from biomass- and biofuel-burning activities followed by atmospheric photochemical processes mainly control the air quality in Tanzania.


2016 ◽  
Vol 16 (17) ◽  
pp. 10985-11000 ◽  
Author(s):  
Yin Wang ◽  
Zhongming Chen ◽  
Qinqin Wu ◽  
Hao Liang ◽  
Liubin Huang ◽  
...  

Abstract. Measurements of atmospheric peroxides were made during Wangdu Campaign 2014 at Wangdu, a rural site in the North China Plain (NCP) in summer 2014. The predominant peroxides were detected to be hydrogen peroxide (H2O2), methyl hydroperoxide (MHP) and peroxyacetic acid (PAA). The observed H2O2 reached up to 11.3 ppbv, which was the highest value compared with previous observations in China at summer time. A box model simulation based on the Master Chemical Mechanism and constrained by the simultaneous observations of physical parameters and chemical species was performed to explore the chemical budget of atmospheric peroxides. Photochemical oxidation of alkenes was found to be the major secondary formation pathway of atmospheric peroxides, while contributions from alkanes and aromatics were of minor importance. The comparison of modeled and measured peroxide concentrations revealed an underestimation during biomass burning events and an overestimation on haze days, which were ascribed to the direct production of peroxides from biomass burning and the heterogeneous uptake of peroxides by aerosols, respectively. The strengths of the primary emissions from biomass burning were on the same order of the known secondary production rates of atmospheric peroxides during the biomass burning events. The heterogeneous process on aerosol particles was suggested to be the predominant sink for atmospheric peroxides. The atmospheric lifetime of peroxides on haze days in summer in the NCP was about 2–3 h, which is in good agreement with the laboratory studies. Further comprehensive investigations are necessary to better understand the impact of biomass burning and heterogeneous uptake on the concentration of peroxides in the atmosphere.


2016 ◽  
Vol 113 (21) ◽  
pp. 5874-5879 ◽  
Author(s):  
Yi Li ◽  
Bret A. Schichtel ◽  
John T. Walker ◽  
Donna B. Schwede ◽  
Xi Chen ◽  
...  

Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium deposition, by contrast, have increased in many regions. Together these changes have altered the balance between oxidized and reduced nitrogen deposition. Across most of the United States, wet deposition has transitioned from being nitrate-dominated in the 1980s to ammonium-dominated in recent years. Ammonia has historically not been routinely measured because there are no specific regulatory requirements for its measurement. Recent expansion in ammonia observations, however, along with ongoing measurements of nitric acid and fine particle ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) US nitrogen deposition budget. Observations from 37 sites reveal that reduced nitrogen contributes, on average, ∼65% of the total inorganic nitrogen deposition budget. Dry deposition of ammonia plays an especially key role in nitrogen deposition, contributing from 19% to 65% in different regions. Future progress toward reducing US nitrogen deposition will be increasingly difficult without a reduction in ammonia emissions.


2009 ◽  
Vol 6 (12) ◽  
pp. 2743-2758 ◽  
Author(s):  
S. Sleutel ◽  
J. Vandenbruwane ◽  
A. De Schrijver ◽  
K. Wuyts ◽  
B. Moeskops ◽  
...  

Abstract. Numerous recent studies have indicated that dissolved organic carbon (DOC) and nitrogen (DON) play an important role in C and N cycling in natural ecosystems, and have shown that N deposition alters the concentrations and fluxes of dissolved organic substances and may increase leaching losses from forests. Our study was set up to accurately quantify concentrations and flux patterns of DOC, DON and dissolved inorganic nitrogen (DIN) in deciduous and coniferous forest in Flanders, Belgium, under historical high nitrogen deposition. We measured DOC, DON and DIN concentrations at two weekly intervals in a silver birch (SB) stand, a corsican pine (CP) stand and a pine stand with higher N deposition (CPN), and used the SWAP model (calibrated with PEST) for generating accurate water and matter fluxes. The input with precipitation was an important source of DON, but not for DOC. Release of DOC from the forest floor was minimally affected by forest type, but higher N deposition (CPN stand) caused an 82% increase of DOC release from the forest floor. Adsorption to mineral soil material rich in iron and/or aluminum oxyhydroxides was suggested to be the most important process removing DOC from the soil solution, responsible for substantial retention (67–84%) of DOC entering the mineral soil profile with forest floor leachate. Generally, DON was less reactive (i.e. less removal from the soil solution) than DOC, resulting in decreasing DOC/DON ratios with soil depth. We found increased DOC retention in the mineral soil as a result of higher N deposition (84 kg ha−1 yr−1 additional DOC retention in CPN compared to CP). Overall DON leaching losses were 2.2, 3.3 and 5.0 kg N yr−1 for SB, CP and CPN, respectively, contributing between 9–28% to total dissolved N (TDN) leaching. The relative contribution to TDN leaching from DON loss from SB and CP was mainly determined by (large) differences in DIN leaching. The large TDN leaching losses are alarming, especially in the CPN stand that was N saturated.


Sign in / Sign up

Export Citation Format

Share Document