scholarly journals Comparison of CFD and Multizone Modeling from Contaminant Migration from a Household Gas Furnace

Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Nina Szczepanik-Scislo ◽  
Lukasz Scislo

In Central and Eastern Europe, a growing popularity of gas heaters as the main source of heat and domestic hot water can be observed. This is the result of new laws and strategies for funding that have been put in place to encourage households to stop using coal and replace it with cleaner energy sources. However, there is a growing concern that gas furnaces are prone to malfunction and can be a threat to occupants through CO (carbon monoxide) generation. To see how a faulty gas furnace with a clogged exhaust may affect a household, a series of multizone and computational fluid dynamics (CFD) simulations were carried out using the CONTAM software and CFD0 editor created by the National Institute of Standards and Technology (NIST). The simulations presented different placements of the furnace and ventilation outlet in an attached garage. The results showed how the placement influenced contaminant migration and occupant exposure to CO. It changed the amount of CO that infiltrated to the attached house and influenced occupant exposure. The results may be used by future users to minimize the risk of CO poisoning by using the proper natural ventilation methods together with optimal placement of the header in the household.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2197
Author(s):  
Nayara Rodrigues Marques Sakiyama ◽  
Jurgen Frick ◽  
Timea Bejat ◽  
Harald Garrecht

Predicting building air change rates is a challenge for designers seeking to deal with natural ventilation, a more and more popular passive strategy. Among the methods available for this task, computational fluid dynamics (CFD) appears the most compelling, in ascending use. However, CFD simulations require a range of settings and skills that inhibit its wide application. With the primary goal of providing a pragmatic CFD application to promote wind-driven ventilation assessments at the design phase, this paper presents a study that investigates natural ventilation integrating 3D parametric modeling and CFD. From pre- to post-processing, the workflow addresses all simulation steps: geometry and weather definition, including incident wind directions, a model set up, control, results’ edition, and visualization. Both indoor air velocities and air change rates (ACH) were calculated within the procedure, which used a test house and air measurements as a reference. The study explores alternatives in the 3D design platform’s frame to display and compute ACH and parametrically generate surfaces where air velocities are computed. The paper also discusses the effectiveness of the reference building’s natural ventilation by analyzing the CFD outputs. The proposed approach assists the practical use of CFD by designers, providing detailed information about the numerical model, as well as enabling the means to generate the cases, visualize, and post-process the results.


2016 ◽  
Vol 78 (8-4) ◽  
Author(s):  
Fawaz Ghaleb Noman ◽  
Nazri Kamsah ◽  
Haslinda Mohamed Kamar

A combined natural ventilation and mechanical fans are commonly used to cool the interior space inside the mosques in Malaysia. This article presents a study on thermal comfort in the Al-Jawahir Mosque, located in Johor Bahru, Malaysia. The objective is to assess the thermal comfort inside the mosque under the present ventilation system by determining the Predicted Mean Vote (PMV) and the Predicted Percentage of Dissatisfied (PPD). These values were then compared to the limits stated in the ASHRAE Standard-55. It was found that the PMV varies from 1.68 to 2.26 while the PPD varies from 61% to 87%. These show that the condition inside the mosque is quite warm. Computational fluid dynamics (CFD) method was used to carry out flow simulations, to identify a suitable strategy to improve the thermal comfort inside the mosque. Results of CFD simulations show that installing four exhaust fans above the windows on the west-side wall of the mosque is the most effective strategy to improve the thermal comfort inside the mosque. Both the PMV and PPD values can potentially be reduced by more than 60%.


2014 ◽  
Vol 1020 ◽  
pp. 518-523
Author(s):  
Martin Kovac ◽  
Katarina Knizova

The subject of the paper is to calculate the energy performance of building in proposed variants. The differences in the variants are in the using of conventional and renewable sources for heating and domestic hot water system. Target of the second part of paper is to know, how much money we need to invest into the proposed variants for heating and domestic hot water systems and how much money will by the user paying for operating costs. The conclusion of the paper describes the payback periods of proposed variants.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5547
Author(s):  
Sabina Kordana-Obuch ◽  
Mariusz Starzec ◽  
Daniel Słyś

In Poland, domestic hot water is heated mainly using fossil fuel energy sources. Such an approach results in the depletion of natural resources, pollution of the atmosphere and, consequently, irreversible changes to the climate. In response to this problem, this research identified the factors that most determine energy savings for heating water in residential buildings, as well as those that affect the choice of an alternative energy source. Additionally, the possibility of implementing shower heat exchangers in existing and newly built residential buildings was assessed, as well as society’s willingness to use such devices. The research was carried out on a sample of 462 inhabitants of the Podkarpackie Voivodeship (Poland). A questionnaire survey was used as a tool. The conducted research has shown that the perspective of environmental protection is not a sufficient motivator to save energy for heating domestic hot water. It is necessary to implement appropriate programs aimed at informing the public about the possibilities offered by the use of alternative energy sources and co-financing the purchase of appropriate devices. In the case of drain water heat recovery systems, a significant problem is also the need to develop new, highly effective designs of shower heat exchangers which can be installed under the floor linear shower drain or on the horizontal shower waste pipe.


2021 ◽  
Vol 5 (2) ◽  
Author(s):  
Marilena De Simone ◽  
Liliangela Callea ◽  
Gianmarco Fajilla

Worldwide, there are many options to ensure domestic hot water (DHW) provision in dwellings. This study aimed to depict the distribution of energy sources and DHW production systems in the Calabria region.  The research was focused on understanding which variables, among contextual variables and building characteristics, may influence the adoption of a particular energy source or production system. Descriptive statistics and chi-square test of independence have been developed. Significant relationships were found between the climatic zone and the energy source used as well as between the climatic zone and the production system installed in both households with a separated and a combined DHW production system. Furthermore, the population of the municipality and the dwelling type resulted to be significant variables for the preference of an energy source or the diffusion of a combined production system.


2018 ◽  
Vol 30 ◽  
pp. 03001
Author(s):  
Maciej Knapik

The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources) methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.


Author(s):  
A. K. Sahu ◽  
T. N. Verma ◽  
S. L. Sinha

Indoor air quality ventilation diminishes airborne respiratory and other transmission in hospitals. Airflow in associate medical care Unit (ICU) may be provided through natural mean and additionally by the assistance of mechanical ventilation. Natural ventilation might not be enough to satisfy the requirement of ventilation for associate degree ICU. In the present study, numerical simulation of the airflow pattern and contaminant movement using Computational Fluid Dynamics (CFD) has been carried out for multiple bed hospital ICU with different inlet angles to examine path of contaminant transfer in the hospital. The measurement of air velocity is used as an input and standard k-ɛ turbulence model used in simulation work. Grid Independence Test (GIT) of hospital ICU has been carried out using high-quality tetrahedral unstructured mesh. In order to predict CFD simulations accurately, flow pattern has been validated using model of ICU with four bed and patient occupied with light source. Results shows that increasing rate of air flow change decreases the mean age of air. Importance of outlet position is high for transfer of contaminant particle from ICU.  


2013 ◽  
Vol 368-370 ◽  
pp. 611-614
Author(s):  
An Shik Yang ◽  
Jen Hao Wu ◽  
Yu Hsuan Juan ◽  
Ying Ming Su

The present study developed a computational fluid dynamics (CFD)-based performance simulator for assessing natural ventilation effectiveness to the central patio and corridors of the new administrative building of the Guanyin Township, Taiwan. The data can share with other potential users for achieving better understanding of the indoor microclimate and the interaction of buildings with urban wind environment for improvement of their design and functioning aspects during the decision-making procedure.


Sign in / Sign up

Export Citation Format

Share Document