scholarly journals High–Resolution Modeling of Airflows and Particle Deposition over Complex Terrain at Sakurajima Volcano

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 325
Author(s):  
Tetsuya Takemi ◽  
Alexandros P. Poulidis ◽  
Masato Iguchi

The realistic representation of atmospheric pollutant dispersal over areas of complex topography presents a challenging application for meteorological models. Here, we present results from high–resolution atmospheric modeling in order to gain insight into local processes that can affect ash transport and deposition. The nested Weather Research and Forecasting (WRF) model with the finest resolution of 50 m was used to simulate atmospheric flow over the complex topography of Sakurajima volcano, Japan, for two volcanic eruption cases. The simulated airflow results were shown to compare well against surface observations. As a preliminary application, idealized trajectory modeling for the two cases revealed that accounting for local circulations can significantly impact volcanic ash deposition leading to a total fall velocity up to 2–3 times the particle’s terminal velocity depending on the size. Such a modification of the estimated particle settling velocity over areas with complex topography can be used to parametrize the impact of orographic effects in dispersal models, in order to improve fidelity.

Author(s):  
Luke J. LeBel ◽  
Brian H. Tang ◽  
Ross A. Lazear

AbstractThe complex terrain at the intersection of the Mohawk and Hudson valleys of New York has an impact on the development and evolution of severe convection in the region. Specifically, previous research has concluded that terrain-channeled flow in the Mohawk and Hudson valleys likely contributes to increased low-level wind shear and instability in the valleys during severe weather events such as the historic 31 May 1998 event that produced a strong (F3) tornado in Mechanicville, New York.The goal of this study is to further examine the impact of terrain channeling on severe convection by analyzing a high-resolution WRF model simulation of the 31 May 1998 event. Results from the simulation suggest that terrain-channeled flow resulted in the localized formation of an enhanced low-level moisture gradient, resembling a dryline, at the intersection of the Mohawk and Hudson valleys. East of this boundary, the environment was characterized by stronger low-level wind shear and greater low-level moisture and instability, increasing tornadogenesis potential. A simulated supercell intensified after crossing the boundary, as the larger instability and streamwise vorticity of the low-level inflow was ingested into the supercell updraft. These results suggest that terrain can have a key role in producing mesoscale inhomogeneities that impact the evolution of severe convection. Recognition of these terrain-induced boundaries may help in anticipating where the risk of severe weather may be locally enhanced.


2020 ◽  
Author(s):  
Ginger Frame ◽  
Erin Spencer

<p>Assessing the accuracy of precipitation sensors can prove very challenging due to the lack of a universal test standard, stemming from difficulties in creating a controlled test scenario. We propose a refined method of testing that is highly reproducible and can be applied to any precipitation sensor regardless of sensing technology.</p><p>It is widely understood that two identical disdrometers mounted close together in a real rain event are not likely to report the same precipitation measurements due to the small scale spatial variation of rain. This makes it difficult to draw comparisons between sensors of the same type and even more difficult to compare rain sensors that have different sensing areas and use different sensing technologies. It is therefore desirable to simulate rainfall in the laboratory that is representative of real world conditions but this presents its own set of challenges, primarily in creating rain drops that travel at terminal velocity. This test method significantly reduces the impact of this issue.</p><p>This is particularly important for sensors such as optical, acoustic, radar or impact, where the calculations used to obtain rainfall accumulation and drop size distribution assume that the droplets are at terminal velocity. Even for sensors such as capacitive rain gauges and tipping buckets, where the velocity of fall is not directly related to the measurements, more valid conclusions can be drawn about the sensor’s ability to measure precipitation when the droplets imitate real rainfall as closely as possible.</p><p>Here, the development of a drip rig capable of creating raindrops of a controlled size is documented. The drip rig can be mounted at a known height and used to test a variety of different precipitation sensors. However, due to height restrictions in the laboratory, it is not possible to get larger raindrops to terminal velocity. Mounted at a height of 7.4m, drops above 2 mm in diameter do not reach 99% terminal velocity, and drops above 3 mm do not reach 95%. For this reason, corrections must be applied to the calculations. It is therefore essential to have an understanding of the change in fall velocity of a water droplet with fall distance.</p><p>This work documents the equations used to calculate drop velocity with fall distance for different drop masses. Temperature, humidity and air pressure define air density, which has a significant impact on the velocity of a falling water droplet. The effect of each of these environmental factors has been investigated in order to allow for further corrections. Performing these corrections greatly improves the validity and repeatability of the tests carried out on precipitation sensors.</p>


2020 ◽  
Author(s):  
Xiao Han ◽  
Lingyun Zhu ◽  
Mingxu Liu ◽  
Yu Song ◽  
Meigen Zhang

Abstract. China is one of the largest agricultural countries in the world. The NH3 emissions from agricultural activities in China significantly affect regional air quality and horizontal visibility. To reliably estimate the influence of NH3 on agriculture, a high-resolution agricultural NH3 emissions inventory, compiled with a 1 km × 1 km horizontal resolution, was applied to calculate the NH3 mass burden in China. The key emission factors of this inventory were enhanced by considering the results of many native experiments, and the activity data of spatial and temporal information were updated using statistical data from 2015. Fertilizer and husbandry, as well as farmland ecosystems, livestock waste, crop residue burning, fuel wood combustion, and other NH3 emission sources were included in the inventory. Furthermore, a source apportionment tool, ISAM (Integrated Source Apportionment Method), coupled with the air quality modeling system RAMS-CMAQ (Regional Atmospheric Modeling System and Community Multiscale Air Quality), was applied to capture the contribution of NH3 emitted from total agriculture (Tagr) in China. The aerosol mass concentration in 2015 was simulated, and the results showed that a high mass concentration of NH3, which exceeded 10 μg m−3, appeared mainly in the North China Plain (NCP), Central China (CNC), the Yangtz River Delta (YRD), and the Sichan Basin (SCB), and the annual average contribution of Tagr NH3 to PM2.5 mass burden in China was 14–18 %. Specific to the PM2.5 components, Tagr NH3 provided a major contribution to ammonium formation (87.6 %) but a tiny contribution to sulfate (2.2 %). In addition, several brute-force sensitivity tests were conducted to estimate the impact of Tagr NH3 emissions reduction on the PM2.5 mass burden. Compared with the results of ISAM, it was found that even though the Tagr NH3 only contributed 10.1 % of nitrate under current emissions scenarios, the reduction of nitrate could reach 98.8 % upon removal of the Tagr NH3 emissions. The main reason for this deviation could be that the NH3 contribution to nitrate is small under rich NH3 conditions and large in poor NH3 environments. Thus, the influence of NH3 on nitrate formation could be enhanced with the decrease of ambient NH3 mass concentration.


2021 ◽  
Author(s):  
Camille Le Coz ◽  
Qidi Yu ◽  
Lloyd A. Treinish ◽  
Manuel Garcia Alvarez ◽  
Ashley Cryan ◽  
...  

<p>Rainfall in Africa is difficult to estimate accurately due to the large spatial variability. Most of the monsoon rainfall is generated by convective rainstorms that can be very localized, sometimes covering less than 100 km2. The goal of the African Rainfall Project is to run the Weather and Research Forecast (WRF) model for sub-Saharan Africa at a convection-permitting resolution in order to better represent such rainfall events. The resolution will be 1km, which is finer than most studies over Africa, which typically use resolutions of 3km or more. Running WRF for such a large area at such a high resolution is computationally expensive, which is where IBM’s World Community Grid comes in. The World Community Grid (WCG) is part of the Social Corporate Responsibility of IBM that crowdsources unused computing power from volunteers devices and donates it to scientific projects.</p><p>The simulation was adapted to the WCG by dividing the simulation of one year over sub-Saharan Africa in many smaller simulations of 48h over 52 by 52 km domains. These simulations are small enough to be calculated on a single computer of a volunteer at the required resolution. In total, 35609 overlapping domains are covering the whole of sub-Saharan Africa. During the post-processing phase, the smaller simulations are merged back together to obtain one consistent simulation over the whole continent.</p><p>Our main focus is rainfall, as this is the variable with the highest socio-economic impact in Africa. However, the outputs of the simulations include other variables such as the 2m-temperature, the 10m-wind speed and direction. These variables are outputted every 15min. At the end of this project, we will have over 3 billion files for a total of 0.5 PB. The data will be reorganized so that the different variables can be stored, searched and retrieved efficiently. After the reorganization, the data will be made publicly available.</p><p>The first validation step will be to examine the impact of dividing sub-Saharan Africa into many smaller domains. This will be done by comparing the simulation from this project to one large simulation. This simulation is obtained by running WRF at a 1km resolution on a large domain (500km by 1000km) for a shorter period, using Cartesius, the Dutch national computer. The second validation step will be to compare the simulations with satellite data and with in-situ measurements from the TAHMO network (www.tahmo.org).</p>


2018 ◽  
Vol 19 (2) ◽  
pp. 477-481 ◽  
Author(s):  
Theodore J. Bohn ◽  
Enrique R. Vivoni

Abstract For their investigation of the impact of irrigated agriculture on hydrometeorological fields in the North American monsoon (NAM) region, Mahalov et al. used the Weather Research and Forecasting (WRF) Model to simulate weather over the NAM region in the summer periods of 2000 and 2012, with and without irrigation applied to the regional croplands. Unfortunately, while the authors found that irrigated agriculture may indeed influence summer precipitation, the magnitude, location, and seasonality of their irrigation inputs were substantially inaccurate because of 1) the assumption that pixels classified as “irrigated cropland” are irrigated during the summer and 2) an outdated land cover map that misrepresents known agricultural districts. The combined effects of these errors are 1) an overestimation of irrigated croplands by a factor of 3–10 along the coast of the Gulf of California and by a factor of 1.5 near the Colorado River delta and 2) a large underestimation of irrigation by a factor of 7–10 in Chihuahua, particularly in 2012. Given the sensitivity of the WRF simulations conducted by Mahalov et al. to the presence of irrigated agriculture, it is expected that the identified errors would significantly impact surface moisture and energy fluxes, resulting in noticeably different effects on precipitation. The authors suggest that the analysis of irrigation effects on precipitation using coupled land–atmospheric modeling systems requires careful specification of the spatiotemporal distribution of irrigated croplands.


2005 ◽  
Vol 6 (4) ◽  
pp. 409-422 ◽  
Author(s):  
N. Hasler ◽  
R. Avissar ◽  
G. E. Liston

Abstract Running regional climate models at a high resolution may improve their ability to simulate regional precipitation patterns, making them suitable for studying the impact of human-induced land-cover changes on hydrometeorology. The performance of the Regional Atmospheric Modeling System (RAMS) run in the high-resolution climate mode (4-km grid mesh) has been tested over a small domain in a semiarid region in central Spain. Three 1-yr simulations representing dry, intermediate, and wet conditions were compared to observations collected in 35 rain gauges. The model captured general spatiotemporal features of precipitation, such as the timing of precipitation events and approximate location of storms. A high correlation (0.82) between monthly domain-averaged observed and modeled precipitation was obtained. However, the model had a systematic dry bias, averaging −0.29 mm day−1, equivalent to 26% of annual rainfall. The small domain size, chosen because of computational limits, induced strong lateral boundary forcing, which, combined with uncertainty in NCEP relative humidity fields, was a likely cause for this dry bias.


2021 ◽  
Vol 13 (19) ◽  
pp. 3860
Author(s):  
Sungbin Jang ◽  
Kyo-Sun Sunny Lim ◽  
Jeongsu Ko ◽  
Kwonil Kim ◽  
GyuWon Lee ◽  
...  

The Weather Research and Forecasting (WRF) Double-Moment 7-Class (WDM7) cloud microphysics scheme was developed to parameterize cloud and precipitation processes explicitly for mesoscale phenomena in the Korean Integrated Model system. However, the WDM7 scheme has not been evaluated for any precipitating convection system over the Korean peninsula. This study modified WDM7 and evaluated simulated convection during summer and winter. The suggested modifications included the integration of the new fall velocity–diameter relationship of raindrops and mass-weighted terminal velocity of solid-phase precipitable hydrometeors (the latter is for representing mixed-phase particles). The mass-weighted terminal velocity for snow and graupel has been suggested by Dudhia et al. (2008) to allow for a more realistic representation of partially rimed particles. The WDM7 scheme having an additional hail category does not apply this terminal velocity only for hail. Additionally, the impact of enhanced collision-coalescence (C-C) efficiency was investigated. An experiment with enhanced C-C efficiency overall improved the precipitation skill scores, such as probability of detection, equitable threat score, and spatial pattern correlation, compared with those of the control experiment for the summer and winter cases. With application of the new mass-weighted terminal velocity of solid-phase hydrometeors, the hail mixing ratio at the surface was considerably reduced, and rain shafts slowed down low-level winds for the winter convective system. Consequently, the simulated hydrometeors were consistent with observations retrieved via remote sensing. The fall velocity–diameter relationship of raindrops further reduced the cloud ice amount. The proposed modifications in our study improved the simulated precipitation and hydrometeor profiles, especially for the selected winter convection case.


2020 ◽  
Vol 12 (4) ◽  
pp. 3097-3112
Author(s):  
Emily Collier ◽  
Thomas Mölg

Abstract. Climate impact assessments require information about climate change at regional and ideally also local scales. In dendroecological studies, this information has traditionally been obtained using statistical methods, which preclude the linkage of local climate changes to large-scale drivers in a process-based way. As part of recent efforts to investigate the impact of climate change on forest ecosystems in Bavaria, Germany, we developed a high-resolution atmospheric modelling dataset, BAYWRF, for this region over the thirty-year period of September 1987 to August 2018. The atmospheric model employed in this study, the Weather Research and Forecasting (WRF) model, was configured with two nested domains of 7.5 and 1.5 km grid spacing centred over Bavaria and forced at the outer lateral boundaries by ERA5 reanalysis data. Using an extensive network of observational data, we evaluate (i) the impact of using grid analysis nudging for a single-year simulation of the period of September 2017 to August 2018 and (ii) the full BAYWRF dataset generated using nudging. The evaluation shows that the model represents variability in near-surface meteorological conditions generally well, although there are both seasonal and spatial biases in the dataset that interested users should take into account. BAYWRF provides a unique and valuable tool for investigating climate change in Bavaria with high interdisciplinary relevance. Data from the finest-resolution WRF domain are available for download at daily temporal resolution from a public repository at the Open Science Framework (Collier, 2020; https://doi.org/10.17605/OSF.IO/AQ58B).


2020 ◽  
Author(s):  
Martina Messmer ◽  
Santos J. González-Rojí ◽  
Christoph C. Raible ◽  
Thomas F. Stocker

<p>Precipitation patterns and climate variability in East Africa and Western South America present high heterogeneity and complexity. This complexity is a result of large-scale and regional controls, such as surrounding oceans, lakes and topography. The combined effect of these controls has implications on precipitation and temperature, and hence, on water availability, biodiversity and ecosystem services. This study focuses on the impact of different physics parameterization in high-resolution experiments performed over equatorial regions with the Weather Research and Forecasting (WRF) model, and how these options affect the representation of precipitation in those regions.</p><p>As expected, weather and climate in equatorial regions are driven by physical processes different to those important in the mid-latitudes. Hence, it is necessary to test the parameterizations available in the WRF model. Several sensitivity simulations are performed over Kenya and Peru nesting the WRF model inside the state-of-the-art ERA5 reanalysis. A cascade of increasing grid resolutions is used in these simulations, reaching the spatial resolutions of 3 and 1 km in the innermost domains, and thus, convection permitting scales. Parameterization options of the planetary boundary layer (PBL), lake model, radiation, cumulus and microphysics schemes are changed, and their sensitivity to precipitation is tested. The year 2008 is simulated for each of the sensitivity simulations. This year is chosen as a good representative of precipitation dynamics and temperature, as it is neither abnormally wet or hot, nor dry or cold over Kenya and Peru. The simulated precipitation driven by the ERA5 reanalysis is compared against station data obtained from the WMO, and over Kenya additionally against observations from the Centre for Training and Integrated Research in ASAL Development (CETRAD).</p><p>Precipitation is strongly underestimated when adopting a typical parameterization setup for the mid-latitudes. However, results indicate that precipitation amounts and also patterns are substantially improved when changing the cumulus and PBL parameterisations. This strong increase in the simulated precipitation is obtained when using the Grell-Freitas ensemble, RRTM and the Yonsei University schemes for cumulus, long-wave radiation and planetary boundary layer, respectively. During some summer months, the accumulated precipitation is improved by up to 100 mm (80 %) compared to mid-latitudes configuration in several regions of the domains (near the Andes in Peru and over the flatlands in Kenya). Additionally, because the 1- and 2-way nesting options show a similar performance with respect to precipitation, the 1-way nesting option is preferred, as it does not overwrite the solutions in the parent domains. Hence, discontinuous solutions related to switching off the cumulus parameterization can be avoided.</p>


2016 ◽  
Author(s):  
Thomas Schwitalla ◽  
Hans-Stefan Bauer ◽  
Volker Wulfmeyer ◽  
Kirsten Warrach-Sagi

Abstract. The impact of a convection permitting (CP) northern hemisphere latitude-belt simulation with the Weather Research and Forecasting (WRF) model was investigated during the July and August 2013. For this application, the WRF model together with the NOAH land-surface model (LSM) was applied at two different horizontal resolutions, 0.03° (HIRES) and 0.12° (LOWRES). The set-up as a latitude-belt domain avoids disturbances that originate from the western and eastern boundaries and therefore allows to study the impact of model resolution and physical parameterizations on the results. Both simulations were forced by ECMWF operational analysis data at the northern and southern domain boundaries and the high-resolution Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) data at the sea surface. The simulations are compared to the operational ECMWF analysis for the representation of large scale features. To compare the simulated precipitation, the operational ECMWF forecast, the CPC MORPHing (CMORPH), and the ENSEMBLES gridded observation precipitation data set (E-OBS) were used. Compared to the operational high-resolution ECMWF analysis, both simulations are able to capture the large scale circulation pattern though the strength of the Pacific high is considerably overestimated in the LOWRES simulation. Major differences between ECMWF and WRF occur during July 2013 when the lower resolution simulation shows a significant negative bias over the North Atlantic which is not observed in the CP simulation. The analysis indicates deficiencies in the applied combinations of cloud microphysics and convection parametrization on the coarser grid scale in subpolar regions. The overall representation of the 500 hPa geopotential height surface is also improved by the CP simulation compared to the LOWRES simulation apart across Newfoundland where the geopotential height is higher than in the LOWRES simulation due to a northward shift of the location of the Atlantic high pressure system. Both simulations show higher wind speeds in the boundary layer by about 1.5 m s−1 compared to the the ECMWF analysis. Due to the higher surface evaporation, this results in a moist bias of 0.5 g kg−1 at 925 hPa in the planetary boundary layer compared to the ECMWF analysis. Major differences between ECMWF and WRF occur in the simulation of the 2-m temperatures over the Asian desert and steppe regions. They are significantly higher in WRF by about 5 K both during day- and night-time presumably as a result of different soil hydraulic parameters used in the NOAH land surface model for steppe regions. The precipitation of the HIRES simulation shows a better spatial agreement with CMORPH especially over mountainous terrain. The overall bias reduces from 80 mm at the coarser resolution to 50 mm in the HIRES simulation and the root mean square error is reduced by about 35 % when compared to the CMORPH precipitation analysis. The precipitation distribution agrees much better with the CMORPH data than the LOWRES simulation which tends to overestimate precipitation, mainly caused by the convection parametrization. Especially over Europe the CP resolution reduces the precipitation bias by about 30 % to 20 mm as a result of a better terrain representation and due to the avoidance of the convection parameterization.


Sign in / Sign up

Export Citation Format

Share Document