scholarly journals Acute Physiological Responses to High-Intensity Resistance Circuit Training vs. Traditional Strength Training in Soccer Players

Biology ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 383
Author(s):  
Cristian Marín-Pagán ◽  
Anthony J. Blazevich ◽  
Linda H. Chung ◽  
Salvador Romero-Arenas ◽  
Tomás T. Freitas ◽  
...  

The aim of this study was to evaluate and compare the cardiorespiratory and metabolic responses induced by high-intensity resistance circuit-based (HRC) and traditional strength (TS) training protocols. Ten amateur soccer players reported to the laboratory on four occasions: (1) protocol familiarization and load determination; (2) maximal oxygen consumption test; (3) and (4) resistance training protocols (HRC and TS), completed in a cross-over randomized order. In both protocols, the same structure was used (two blocks of 3 sets × 3 exercises, separated by a 5-min rest), with only the time between consecutive exercises differing: TS (3 min) and HRC (~35 s, allowing 3 min of local recovery). To test for between-protocol differences, paired t-tests were applied. Results showed that oxygen consumption and heart rate during HRC were 75% and 39% higher than TS, respectively (p < 0.001). After the training sessions, blood lactate concentration at 1.5, 5 and 7 min and excess post-exercise oxygen consumption were higher in HRC. The respiratory exchange ratio was 6.7% greater during HRC, with no between-group differences found post-exercise. The energy cost of HRC was ~66% higher than TS. In conclusion, HRC training induces greater cardiorespiratory and metabolic responses in soccer players and thus may be a time-effective training strategy.

Sports ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 82
Author(s):  
Jeffrey Rothschild ◽  
George H. Crocker

The purpose of this study was to examine the effects of a 2-km swim on markers of subsequent cycling performance in well-trained, age-group triathletes. Fifteen participants (10 males, five females, 38.3 ± 8.4 years) performed two progressive cycling tests between two and ten days apart, one of which was immediately following a 2-km swim (33.7 ± 4.1 min). Cycling power at 4-mM blood lactate concentration decreased after swimming by an average of 3.8% (p = 0.03, 95% CI −7.7, 0.2%), while heart rate during submaximal cycling (220 W for males, 150 W for females) increased by an average of 4.0% (p = 0.02, 95% CI 1.7, 9.7%), compared to cycling without prior swimming. Maximal oxygen consumption decreased by an average of 4.0% (p = 0.01, 95% CI −6.5, −1.4%), and peak power decreased by an average of 4.5% (p < 0.01, 95% CI −7.3, −2.3%) after swimming, compared to cycling without prior swimming. Results from this study suggest that markers of submaximal and maximal cycling are impaired following a 2-km swim.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tiago Cetolin ◽  
Anderson Santiago Teixeira ◽  
Juliano Fernandes da Silva ◽  
Alessandro Haupenthal ◽  
Fábio Yuzo Nakamura ◽  
...  

This study aimed to examine the acute physiological effect of shuttle-run-based high-intensity intermittent exercise (HIIE) performed at the same relative speed (i. e., 100% PST−CAR) on sand (SAND) and grass (GRASS) in male junior soccer players. Seven Under-23 Brazilian national league (“Série A”) soccer players completed four testing sessions in either SAND or GRASS surface condition. The first two testing sessions consisted of performing a maximal progressive shuttle-run field protocol until volitional exhaustion (Carminatti's test, T-CAR), whereas the third and fourth sessions comprised a HIIE session on each ground surface. The HIIE session consisted of three 5-min bouts [12 s shuttle-run (with a direction change every 6 s)/12 s of passive rest] performed at 100% of T-CAR peak speed (PST−CAR) with 3 min of passive recovery between sets. Measurements of oxygen uptake (VO2), heart rate (HR), blood lactate concentration ([La]), and rating of perceived exertion (RPE) were performed during all conditions. The SAND condition elicited significantly higher %VO2peak (94.58 ± 2.73 vs. 87.45 ± 3.31%, p &lt; 0.001, d = 2.35), %HRpeak (93.89 ± 2.63 vs. 90.31 ± 2.87%, p &lt; 0.001, d = 1.30), RPE (8.00 ± 0.91 vs. 4.95 ± 1.23 a.u., p &lt; 0.001, d = 2.82), and [La] (10.76 ± 2.37 vs. 5.48 ± 1.13 mmol/L, p &lt; 0.010, d = 2.84). This study showed that higher internal workloads are experienced by the players during a single HIIE session performed on a softer surface as SAND, even when the exercise intensity was individualized based on 100%PST−CAR.


1992 ◽  
Vol 73 (1) ◽  
pp. 234-239 ◽  
Author(s):  
M. T. Jones ◽  
R. E. Rawson ◽  
D. Robertshaw

Previous work with pregnant ewes has shown that acute bouts of exercise may cause changes in plasma hormone concentrations, blood flow distribution, and maternal and fetal temperatures. However, most of these studies do not quantify the chosen exercise intensity through measurement of oxygen consumption (VO2). Therefore the purpose of this study was to statistically model the VO2 response of pregnant sheep to treadmill (TM) exercise to determine the exercise intensities (% maximal VO2) of previous studies. Ewes with either single (n = 9) or twin (n = 5) fetuses were studied from 100 to 130 days of gestation. After 1–2 wk of TM habituation, maximal VO2 (VO2max) was determined by measurements of VO2 (open flow-through method) and blood lactate concentration. VO2 was measured as a function of TM incline (0, 3, 5, and 7 degree) and speed (0.8–3.4 m/s). VO2max averaged 57 +/- 7 (SD) ml.min-1.kg-1, and peak lactate concentration during exercise averaged 22 +/- 2 mmol/l. The relationship between VO2 (ml.min-1.kg-1) and incline (INC) and speed (SP) [VO2 = 0.70(INC) + 13.95(SP) + 1.07(INC x SP) - 1.18] was linear (r2 = 0.94). Our findings suggest that most previous research used exercise intensities less than 60% VO2max and indicate the need for further research that examines the effect of exercise during pregnancy at levels greater than 60% VO2max.


2009 ◽  
Vol 34 (6) ◽  
pp. 1048-1054 ◽  
Author(s):  
Ermanno Rampinini ◽  
Aldo Sassi ◽  
Andrea Morelli ◽  
Stefano Mazzoni ◽  
Maurizio Fanchini ◽  
...  

This study investigated the repeated-sprint ability (RSA) physiological responses to a standardized, high-intensity, intermittent running test (HIT), maximal oxygen uptake (VO2 max), and oxygen uptake (VO2) kinetics in male soccer players (professional (N = 12) and amateur (N = 11)) of different playing standards. The relationships between each of these factors and RSA performance were determined. Mean RSA time (RSAmean) and RSA decrement were related to the physiological responses to HIT (blood lactate concentration ([La–]), r = 0.66 and 0.77; blood bicarbonate concentration ([HCO3–]), r = –0.71 and –0.75; and blood hydrogen ion concentration ([H+]),r = 0.61 and 0.73; all p < 0.05), VO2 max (r = –0.45 and –0.65, p < 0.05), and time constant (τ) in VO2 kinetics (r = 0.62 and 0.62, p < 0.05). VO2 max was not different between playing standards (58.5 ± 4.0 vs. 56.3 ± 4.5 mL·kg–1·min–1; p = 0.227); however, the professional players demonstrated better RSAmean (7.17 ± 0.09 vs. 7.41 ± 0.19 s; p = 0.001), lower [La–] (5.7 ± 1.5 vs. 8.2 ± 2.2 mmol·L–1; p = 0.004), lower [H+] (46.5 ± 5.3 vs. 52.2 ± 3.4 mmol·L–1; p = 0.007), and higher [HCO3–] (20.1 ± 2.1 vs. 17.7 ± 1.7 mmol·L–1; p = 0.006) after the HIT, and a shorter τ in VO2 kinetics (27.2 ± 3.5 vs. 32.3 ± 6.0 s; p = 0.019). These results show that RSA performance, the physiological response to the HIT, and τ differentiate between professional- and amateur-standard soccer players. Our results also show that RSA performance is related to VO2 max, τ, and selected physiological responses to a standardized, high-intensity, intermittent exercise.


2014 ◽  
Vol 9 (3) ◽  
pp. 471-479 ◽  
Author(s):  
Jack D. Ade ◽  
Jamie A. Harley ◽  
Paul S. Bradley

Purpose:To quantify the physiological responses, time–motion characteristics, and reproducibility of various speed-endurance-production (SEP) and speed-endurance-maintenance (SEM) drills.Methods:Sixteen elite male youth soccer players completed 4 drills: SEP 1 v 1 small-sided game (SSG), SEP running drill, SEM 2 v 2 SSG, and SEM running drill. Heart-rate response, blood lactate concentration, subjective rating of perceived exertion (RPE), and time–motion characteristics were recorded for each drill.Results:The SEP and SEM running drills elicited greater (P < .05) heart-rate responses, blood lactate concentrations, and RPE than the respective SSGs (ES 1.1–1.4 and 1.0–3.2). Players covered less (P < .01) total distance and high-intensity distance in the SEP and SEM SSGs than in the respective running drills (ES 6.0–22.1 and 3.0–18.4). Greater distances (P < .01) were covered in high to maximum acceleration/deceleration bands during the SEP and SEM SSGs than the respective running drills (ES 2.6–4.6 and 2.3–4.8). The SEP SSG and generic running protocols produced greater (P < .05) blood lactate concentrations than the respective SEM protocols (ES 1.2–1.7). Small to moderate test–retest variability was observed for heart-rate response (CV 0.9–1.9%), RPE (CV 2.9–5.7%), and blood lactate concentration (CV 9.9–14.4%); moderate to large test–retest variability was observed for high-intensity-running parameters (CV > 11.3%) and the majority of accelerations/deceleration distances (CV > 9.8%) for each drill.Conclusions:The data demonstrate the potential to tax the anaerobic energy system to different extents using speed-endurance SSGs and that SSGs elicit greater acceleration/deceleration load than generic running drills.


2014 ◽  
Vol 9 (1) ◽  
pp. 151-160 ◽  
Author(s):  
Andrea Nicolò ◽  
Ilenia Bazzucchi ◽  
Mauro Lenti ◽  
Jonida Haxhi ◽  
Alessandro Scotto di Palumbo ◽  
...  

Purpose:To investigate the effects of work-to-rest-ratio manipulation on neuromuscular and metabolic responses during 2 high-intensity intermittent training (HIT) protocols to exhaustion. Since different exercise durations were expected, the authors hypothesized that the protocol registering a longer duration would have a more pronounced effect on neuromuscular responses, while the other would challenge the cardiopulmonary system more.Methods:Thirteen competitive cyclists (age 19 ± 2 y) performed a preliminary incremental test to identify their maximal power output and 2 intermittent protocols to exhaustion (40:20s and 30:30s) at a fixed work rate of 135%Pmax interspersed by passive recovery. Surface electromyographic (sEMG) parameters (including muscle-fiber conduction velocity), cardiopulmonary parameters, and blood lactate concentration [La−] were recorded.Results:Time to exhaustion and total work were significantly higher for the 30:30s (38 ± 13 min, 495 ± 161 kJ) than for the 40:20s (10 ± 3 min, 180 ± 51 kJ). No differences were found in sEMG parameters for the 2 protocols. Mean and peak values of VO2, heart rate, ventilatory parameters (except for the peak value of respiratory frequency), and [La−] were significantly higher in the 40:20s than in the 30:30s.Conclusions:These results do not support the hypothesis that a longer time spent at high intensity has a more pronounced effect on neuromuscular responses, as no differences in EMG parameters were found in the 2 HIT protocols. Regarding metabolic responses, while the 40:20s led to maximal values of VO2, [La−], and ventilatory parameters within a few minutes, the 30:30s allowed maintenance of moderately high values for a considerably longer period, especially for [La−] and ventilatory parameters.


2014 ◽  
Vol 9 (3) ◽  
pp. 480-488 ◽  
Author(s):  
Asier Los Arcos ◽  
Javier Yanci ◽  
Jurdan Mendiguchia ◽  
Juan J. Salinero ◽  
Matt Brughelli ◽  
...  

Purpose:The aim of this study was to compare the effects of 2 strength and conditioning programs involving either purely vertically oriented or combining vertically and horizontally oriented exercises on soccer-relevant performance variables (ie, acceleration, jumping ability, peak power, and endurance).Methods:Twenty-two professional male soccer players were randomly assigned to 2 training groups: vertical strength (VS, n = 11) and vertical and horizontal strength (VHS, n = 11). Players trained 2 times per week during all the preseason (5 wk) and 3 weeks of the competitive season. The effect of the training protocols was assessed using doubleand single-leg vertical countermovement jumps (CMJ), half-squat peak power (PP), sprint performance over 5 and 15 m, and blood lactate concentration at selected running speeds.Results:Both groups obtained significant improvements in PP (P < .05; ES = 0.87 and 0.80 for VS and VHS, respectively) and small practical improvements in 5-m- (P < .05; ES = 0.27 and 0.25 for VS and VHS, respectively) and 15-m-sprint time (P < .05; ES = 0.19 and 0.24 for VS and VHS, respectively). The CMJ performance showed a small improvement (P < .05, ES = 0.34) only in the VHS group. Submaximal aerobic-fitness changes were similar in both groups (P < .05; ES = 1.89 and 0 .71 for VS and VHS, respectively).Conclusion:This study provided a small amount of practical evidence for the consideration of preseason training protocols that combine exercises for vertical- and horizontal-axis strength development in professional male soccer players. Further studies using more aggressive training protocols involving horizontally oriented conditioning exercises are warranted.


1993 ◽  
Vol 179 (1) ◽  
pp. 31-46 ◽  
Author(s):  
T. M. Williams ◽  
W. A. Friedl ◽  
J. E. Haun

Despite speculation about the swimming efficiency of cetaceans, few studies have investigated the exercise physiology of these mammals. In view of this, we examined the physiological responses and locomotor energetics of two exercising adult Tursiops truncatus. Oxygen consumption, heart rate, respiratory rate and post-exercise blood lactate concentration were determined for animals either pushing against a load cell or swimming next to a boat. Many of the energetic and cardiorespiratory responses of exercising dolphins were similar to those of terrestrial mammals. Average heart rate, respiratory rate and oxygen consumption for dolphins pushing against a load cell increased linearly with exercise levels up to 58 kg for a female dolphin and 85 kg for a male. Oxygen consumption did not increase with higher loads. Maximum rate of oxygen consumption (VO2max) ranged from 19.8 to 29.4 ml O2 kg-1 min-1, which was 7–11 times the calculated standard metabolic rate (VO2std) of the dolphins. Blood lactate concentration increased with exercise loads that exceeded VO2max. The maximum lactate concentration was 101.4 mg dl-1 (11.3 mmol l-1) for the male, and 120.6 mg dl-1 (13.6 mmol l-1) for the female. When swimming at 2.1 m s-1, heart rate, respiratory rate and post-exercise blood lactate concentration of the dolphins were not significantly different from values at rest. The cost of transport at this speed was 1.29 +/− 0.05 J kg-1 min-1. The energetic profile of the exercising bottlenose dolphin resembles that of a relatively sedentary mammal if the exercise variables defined for terrestrial mammals are used. However, the energetic cost of swimming for this cetacean is low in comparison to that of other aquatic and semi-aquatic mammals.


Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 309
Author(s):  
Matthew F. Higgins ◽  
Benjamin Rudkin ◽  
Chia-Hua Kuo

This study examined whether deep ocean mineral (DOM) supplementation improved high-intensity intermittent running capacity after short-term recovery from an initial bout of prolonged high-intensity running in thermoneutral environmental conditions. Nine healthy recreational male soccer players (age: 22 ± 1 y; stature: 181 ± 5 cm; and body mass 80 ± 11 kg) completed a graded incremental test to ascertain peak oxygen uptake (V·O2PEAK), two familiarisation trials, and two experimental trials following a double-blind, repeated measures, crossover and counterbalanced design. All trials were separated by seven days and at ambient room temperature (i.e., 20 °C). During the 2 h recovery period after the initial ~60 min running at 75% V·O2PEAK, participants were provided with 1.38 ± 0.51 L of either deep ocean mineral water (DOM) or a taste-matched placebo (PLA), both mixed with 6% sucrose. DOM increased high-intensity running capacity by ~25% compared to PLA. There were no differences between DOM and PLA for blood lactate concentration, blood glucose concentration, or urine osmolality. The minerals and trace elements within DOM, either individually or synergistically, appear to have augmented high-intensity running capacity in healthy, recreationally active male soccer players after short-term recovery from an initial bout of prolonged, high-intensity running in thermoneutral environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document