scholarly journals Recent Advances in Microbial Production of cis,cis-Muconic Acid

Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1238 ◽  
Author(s):  
Sisun Choi ◽  
Han-Na Lee ◽  
Eunhwi Park ◽  
Sang-Jong Lee ◽  
Eung-Soo Kim

cis,cis-Muconic acid (MA) is a valuable C6 dicarboxylic acid platform chemical that is used as a starting material for the production of various valuable polymers and drugs, including adipic acid and terephthalic acid. As an alternative to traditional chemical processes, bio-based MA production has progressed to the establishment of de novo MA pathways in several microorganisms, such as Escherichia coli, Corynebacterium glutamicum, Pseudomonas putida, and Saccharomyces cerevisiae. Redesign of the metabolic pathway, intermediate flux control, and culture process optimization were all pursued to maximize the microbial MA production yield. Recently, MA production from biomass, such as the aromatic polymer lignin, has also attracted attention from researchers focusing on microbes that are tolerant to aromatic compounds. This paper summarizes recent microbial MA production strategies that involve engineering the metabolic pathway genes as well as the heterologous expression of some foreign genes involved in MA biosynthesis. Microbial MA production will continue to play a vital role in the field of bio-refineries and a feasible way to complement various petrochemical-based chemical processes.

1999 ◽  
Vol 23 (8) ◽  
pp. 470-471
Author(s):  
Motoo Tori ◽  
Masakazu Sono ◽  
Keiko Takikawa ◽  
Reiko Matsuda ◽  
Masao Toyota ◽  
...  

On treatment with m-chloroperbenzoic acid, dihydroeugenol methyl ether and marchantin A trimethyl ether afford muconic acid ester derivatives by oxidation of the aromatic ring as well as hydroxylated derivatives; the m-chlorobenzoate of the dihydroeugenol derivative is also observed for the former.


2017 ◽  
Vol 61 (10) ◽  
Author(s):  
Marianne Lucas-Hourani ◽  
Daniel Dauzonne ◽  
Hélène Munier-Lehmann ◽  
Samira Khiar ◽  
Sébastien Nisole ◽  
...  

ABSTRACT De novo pyrimidine biosynthesis is a key metabolic pathway involved in multiple biosynthetic processes. Here, we identified an original series of 3-(1H-indol-3-yl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one derivatives as a new class of pyrimidine biosynthesis inhibitors formed by two edge-fused polycyclic moieties. We show that identified compounds exhibit broad-spectrum antiviral activity and immunostimulatory properties, in line with recent reports linking de novo pyrimidine biosynthesis with innate defense mechanisms against viruses. Most importantly, we establish that pyrimidine deprivation can amplify the production of both type I and type III interferons by cells stimulated with retinoic acid-inducible gene 1 (RIG-I) ligands. Altogether, our results further expand the current panel of pyrimidine biosynthesis inhibitors and illustrate how the production of antiviral interferons is tightly coupled to this metabolic pathway. Functional and structural similarities between this new chemical series and dicoumarol, which was reported before to inhibit pyrimidine biosynthesis at the dihydroorotate dehydrogenase (DHODH) step, are discussed.


2018 ◽  
Author(s):  
Thomas D.S. Sutton ◽  
Adam G. Clooney ◽  
Feargal J. Ryan ◽  
R. Paul Ross ◽  
Colin Hill

AbstractBackgroundThe viral component of microbial communities play a vital role in driving bacterial diversity, facilitating nutrient turnover and shaping community composition. Despite their importance, the vast majority of viral sequences are poorly annotated and share little or no homology to reference databases. As a result, investigation of the viral metagenome (virome) relies heavily on de novo assembly of short sequencing reads to recover compositional and functional information. Metagenomic assembly is particularly challenging for virome data, often resulting in fragmented assemblies and poor recovery of viral community members. Despite the essential role of assembly in virome analysis and difficulties posed by these data, current assembly comparisons have been limited to subsections of virome studies or bacterial datasets.DesignThis study presents the most comprehensive virome assembly comparison to date, featuring 16 metagenomic assembly approaches which have featured in human virome studies. Assemblers were assessed using four independent virome datasets, namely; simulated reads, two mock communities, viromes spiked with a known phage and human gut viromes.ResultsAssembly performance varied significantly across all test datasets, with SPAdes (meta) performing consistently well. Performance of MIRA and VICUNA varied, highlighting the importance of using a range of datasets when comparing assembly programs. It was also found that while some assemblers addressed the challenges of virome data better than others, all assemblers had limitations. Low read coverage and genomic repeats resulted in assemblies with poor genome recovery, high degrees of fragmentation and low accuracy contigs across all assemblers. These limitations must be considered when setting thresholds for downstream analysis and when drawing conclusions from virome data.


2019 ◽  
Vol 47 (19) ◽  
pp. 10452-10463 ◽  
Author(s):  
Xiangyang Liu ◽  
Sanjan T P Gupta ◽  
Devesh Bhimsaria ◽  
Jennifer L Reed ◽  
José A Rodríguez-Martínez ◽  
...  

Abstract Ligand-responsive allosteric transcription factors (aTF) play a vital role in genetic circuits and high-throughput screening because they transduce biochemical signals into gene expression changes. Programmable control of gene expression from aTF-regulated promoter is important because different downstream effector genes function optimally at different expression levels. However, tuning gene expression of native promoters is difficult due to complex layers of homeostatic regulation encoded within them. We engineered synthetic promoters de novo by embedding operator sites with varying affinities and radically reshaped binding preferences within a minimal, constitutive Escherichia coli promoter. Multiplexed cell-based screening of promoters for three TetR-like aTFs generated with this approach gave rich diversity of gene expression levels, dynamic ranges and ligand sensitivities and were 50- to 100-fold more active over their respective native promoters. Machine learning on our dataset revealed that relative position of the core motif and bases flanking the core motif play an important role in modulating induction response. Our generalized approach yields customizable and programmable aTF-regulated promoters for engineering cellular pathways and enables the discovery of new small molecule biosensors.


1973 ◽  
Vol 28 (11-12) ◽  
pp. 662-674 ◽  
Author(s):  
Günther Schulz ◽  
Erich Hecker

Abstract The preparation of substituted cis,cis-muconic acids by oxidative ring scission of simple o-di-phenols with peracetic acid is investigated. Scission of pyrocatechol (1) to cis,cis-muconic acid (2) gives optimal yields, if acetic acid or ethyl acetate is used as solvent and if the solution is 15-20% with respect to sulfuric acid free peracetic acid comprising a one molar excess of oxidant. Under similar conditions, 3-tosylamino-pyrocatechol yields with peracetic acid the hitherto unknown α-tosylamino-cis,cis-muconic caid (18). 18 may be converted to α-tosylamino-traras,trans-muconic acid (19) by means of iodine, UV light or heating. From protocatechuic acid (4) under similar conditions not β-carboxy-cis,cis-muconic acid (5) is obtained, but rather β-carboxy-mucono-lactone (6 b, γ-carboxymethyl-β-carboxy-Δα-butenolide). As yet, this lactone has been accessible only from an isomer of β-carboxy-cis,cis-muconic acid, the latter being obtainable by enzymatic scission of protocatechuic acid (4). Steric effects are responsible for both, the formation of the free cis,cis-muconic acids 2 and 18 from pyrocatechol (1) and α-tosylamino-pyrocatechol, and the formation of the γ-lactone 6 b instead of β -carboxy-cis,cis-muconic acid by scission of protocatechuic acid (4). The time course of the reactions shows that - compared to pyrocatechol (1) - a 3-tosylamino-group enhances the peracetic acid scission, whereas a 4-carboxygroup as in 4 slows it down


2018 ◽  
Vol 20 (21) ◽  
pp. 5007-5019 ◽  
Author(s):  
Davinia Salvachúa ◽  
Christopher W. Johnson ◽  
Christine A. Singer ◽  
Holly Rohrer ◽  
Darren J. Peterson ◽  
...  

This work shows parallel strain and bioreactor process development to improve muconic acid production from aromatic compounds and lignin.


Sign in / Sign up

Export Citation Format

Share Document