scholarly journals Obesity-Related Changes in Human Plasma Lipidome Determined by the Lipidyzer Platform

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 326
Author(s):  
Péter Pikó ◽  
László Pál ◽  
Sándor Szűcs ◽  
Zsigmond Kósa ◽  
János Sándor ◽  
...  

Obesity is an increasing public health concern both in the developed and developing countries. Previous studies have demonstrated that considerable alterations in lipid metabolism and consequently marked changes in lipid profile are associated with the onset and progression of obesity-related complications. To characterize the full spectrum of obesity-induced changes in lipid metabolism, direct infusion tandem mass spectrometry analysis is the most promising approach. To better understand which of the many lipid species are the most strongly associated with obesity, the aim of our work was to measure and profile plasma lipids in normal (n = 57), overweight (n = 31), and obese (n = 48) individuals randomly selected from samples of Hungarian general and Roma populations by using the targeted quantitative lipidomics platform, the Lipidyzer. Principal component and stepwise regression analyses were used to identify the most significant clusters and species of lipids by increasing body mass index (BMI). From the 18 clusters identified four key lipid species (PE P-16:0/20:3, TG 20:4_33:1, TG 22:6_36:4, TG 18:3_33:0) showed a strong significant positive and three others (Hex-Cer 18:1;O2/22:0, LPC 18:2, PC 18:1_18:1) significant negative association with BMI. Compared to individual lipid species alone, the lipid species ratio (LSR) we introduced showed an extremely strong, at least 9 orders of magnitude stronger, association with BMI. The LSR can be used as a sensitive and predictive indicator to monitor obesity-related alterations in human plasma and control the effectiveness of treatment of obesity associated non-communicable diseases.

2000 ◽  
Vol 81 (1-2) ◽  
pp. 105-109 ◽  
Author(s):  
Véronique Ducros ◽  
François Laporte ◽  
Nicole Belin ◽  
Agnès David ◽  
Alain Favier

2017 ◽  
Vol 80 (7) ◽  
pp. 1167-1171 ◽  
Author(s):  
Antonella De Roma ◽  
Maria Cesarina Abete ◽  
Paola Brizio ◽  
Giuseppe Picazio ◽  
Marcello Caiazzo ◽  
...  

ABSTRACT Human exposure to contaminated food is a general health concern worldwide; it is necessary to evaluate food safety with respect to contaminants present in the edible parts of major food crops. This study evaluated the concentrations of 17 trace elements (As, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, and Zn) from 51 potato plantations in the Campania region, inside the area known as the “Triangle of Death,” with inductively coupled plasma mass spectrometry analysis. Results confirm that the potatoes collected from the suburban area of Naples contained concentrations of trace elements below the safe limits prescribed by the Food and Agriculture Organization of the United Nations and the World Health Organization. The concentrations of elements were similar to those reported for potatoes grown in other countries. Monitoring the content of toxic and potentially toxic elements is one of the most important aspects of food quality assurance. The environmental persistence of metals may result in the accumulation of significant levels of these contaminants in plants. They are absorbed to different extents, depending on their source, soil and climatic factors, plant genotype, and agrotechnical conditions, thereby entering the food chain and representing a risk to human health.


2015 ◽  
Vol 2 (2) ◽  
Author(s):  
Izabella Surowiec ◽  
Judy Orikiiriza ◽  
Elisabeth Karlsson ◽  
Maria Nelson ◽  
Mari Bonde ◽  
...  

Abstract Background.  Accuracy in malaria diagnosis and staging is vital to reduce mortality and post infectious sequelae. In this study, we present a metabolomics approach to diagnostic staging of malaria infection, specifically Plasmodium falciparum infection in children. Methods.  A group of 421 patients between 6 months and 6 years of age with mild and severe states of malaria with age-matched controls were included in the study, 107, 192, and 122, individuals, respectively. A multivariate design was used as basis for representative selection of 20 patients in each category. Patient plasma was subjected to gas chromatography-mass spectrometry analysis, and a full metabolite profile was produced from each patient. In addition, a proof-of-concept model was tested in a Plasmodium berghei in vivo model where metabolic profiles were discernible over time of infection. Results.  A 2-component principal component analysis revealed that the patients could be separated into disease categories according to metabolite profiles, independently of any clinical information. Furthermore, 2 subgroups could be ide.jpegied in the mild malaria cohort who we believe represent patients with divergent prognoses. Conclusions.  Metabolite signature profiling could be used both for decision support in disease staging and prognostication.


2021 ◽  
Vol 117 (11/12) ◽  
Author(s):  
Pabalala M. Mthembi ◽  
Ellen M. Mwenesongole ◽  
Michael D. Cole

Nyaope, a Tswana word for a mixture or ‘mish-mash’, describes a drug cocktail consisting of heroin, cannabis, and on occasion other controlled substances and warfarin. It is highly addictive with extremely unpleasant side effects caused by withdrawal from the drug. It is a problem drug especially in townships in South Africa. However, its prevalence in neighbouring southern African states and further afield is not yet known. There is currently no validated method for the analysis and comparison of nyaope. We describe a validated method for the gas chromatography – mass spectrometry analysis of nyaope so that within-batch and between-batch comparisons of nyaope can successfully be made for the first time. The validated method managed an accuracy within the range 80–120%, the precision was less than 20% for all analytes and managed linearity with R2≥0.99. The detection limits for diamorphine, efavirenz, nevirapine and Δ9-tetrahydrocannabinol were 14.2, 18.6, 18.7 and 9.94 pg on column, respectively, and the limits of quantitation were 43.1, 56.3, 56.6 and 30.1 pg on column, respectively. The simulated and casework samples were successfully discriminated into original batches using the identified nyaope components, the unsupervised chemometric methods principal component analysis and hierarchical clustering, as well as chromatographic profiles.


Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 722
Author(s):  
JeongAe Heo ◽  
Han Sub Kwak ◽  
Miran Kim ◽  
Jae-Ho Kim ◽  
Hyung Hee Baek ◽  
...  

The sensory characteristics and volatile compounds that affect consumers’ acceptance of rice liquors were investigated. A total of 80 consumers evaluated 12 yakju samples and descriptive analysis by 11 trained panelists was conducted. Solvent-assisted flavor evaporation-gas chromatography-mass spectrometry analysis also was conducted revealing 120 volatile compounds in the yakju samples. Sensory attributes (n = 31) except appearance attributes were used for principal component analysis (PCA). As results, fruit odor (apple, hawthorn, omija, and pineapple odor) and flower odor (chrysanthemum, pine, and peppermint odor) were placed on the positive side of PC1 whereas persimmon vinegar odor, bitter taste, alcohol flavor, stinging and coating mouthfeel were located on the negative side of PC1. The yakju samples were mainly characterized by their alcohol content and supplementary ingredients. Sensory descriptors (n = 31; except appearance attributes and p > 0.05) and volatile compounds (n = 30; p > 0.5 correlation coefficient with overall acceptance) were chosen for multiple factor analysis (MFA). The MFA correlation map showed that ethyl propanoate, ethyl-2-hydroxy-2-methylbutanoate, methyl 2-furoate, γ-butyrolactone, 4-ethoxycarbonyl-γ-butyrolactone, hawthorn odor, apple flavor, grape flavor, and sweet taste were positively correlated with young consumers’ overall acceptance. Additionally, negative correlation with overall acceptance was found in 1,3-butanediol, 2,3-butanediol, and 1,1-diethoxy-3-methylbutane.


Metabolites ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 254 ◽  
Author(s):  
Mateusz M. Tomczyk ◽  
Vernon W. Dolinsky

Cardiovascular disease (CVD) is the leading cause of death worldwide. There are numerous factors involved in the development of CVD. Among these, lipids have an important role in maintaining the myocardial cell structure as well as cardiac function. Fatty acids (FA) are utilized for energy, but also contribute to the pathogenesis of CVD and heart failure. Advances in mass spectrometry methods have enabled the comprehensive analysis of a plethora of lipid species from a single sample comprised of a heterogeneous population of lipid molecules. Determining cardiac lipid alterations in different models of CVD identifies novel biomarkers as well as reveals molecular mechanisms that underlie disease development and progression. This information could inform the development of novel therapeutics in the treatment of CVD. Herein, we provide a review of recent studies of cardiac lipid profiles in myocardial infarction, obesity, and diabetic and dilated cardiomyopathy models of CVD by methods of mass spectrometry analysis.


Sign in / Sign up

Export Citation Format

Share Document