scholarly journals The Amazing World of IDPs in Human Diseases

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 333
Author(s):  
Simona Maria Monti ◽  
Giuseppina De Simone ◽  
Emma Langella

It has been clearly established that some proteins or protein regions are devoid of any stable secondary and/or tertiary structure under physiological conditions, but still possess fundamental biological functions [...]

2018 ◽  
Vol 47 (3) ◽  
pp. 893-913 ◽  
Author(s):  
Qing Tang ◽  
Swei Sunny Hann

Long non-coding RNAs (LncRNAs) represent a novel class of noncoding RNAs that are longer than 200 nucleotides without protein-coding potential and function as novel master regulators in various human diseases, including cancer. Accumulating evidence shows that lncRNAs are dysregulated and implicated in various aspects of cellular homeostasis, such as proliferation, apoptosis, mobility, invasion, metastasis, chromatin remodeling, gene transcription, and post-transcriptional processing. However, the mechanisms by which lncRNAs regulate various biological functions in human diseases have yet to be determined. HOX antisense intergenic RNA (HOTAIR) is a recently discovered lncRNA and plays a critical role in various areas of cancer, such as proliferation, survival, migration, drug resistance, and genomic stability. In this review, we briefly introduce the concept, identification, and biological functions of HOTAIR. We then describe the involvement of HOTAIR that has been associated with tumorigenesis, growth, invasion, cancer stem cell differentiation, metastasis, and drug resistance in cancer. We also discuss emerging insights into the role of HOTAIR as potential biomarkers and therapeutic targets for novel treatment paradigms in cancer.


Author(s):  
Hongying Zhao ◽  
Jian Shi ◽  
Yunpeng Zhang ◽  
Aimin Xie ◽  
Lei Yu ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) are associated with human diseases. Although lncRNA–disease associations have received significant attention, no online repository is available to collect lncRNA-mediated regulatory mechanisms, key downstream targets, and important biological functions driven by disease-related lncRNAs in human diseases. We thus developed LncTarD (http://biocc.hrbmu.edu.cn/LncTarD/ or http://bio-bigdata.hrbmu.edu.cn/LncTarD), a manually-curated database that provides a comprehensive resource of key lncRNA–target regulations, lncRNA-influenced functions, and lncRNA-mediated regulatory mechanisms in human diseases. LncTarD offers (i) 2822 key lncRNA–target regulations involving 475 lncRNAs and 1039 targets associated with 177 human diseases; (ii) 1613 experimentally-supported functional regulations and 1209 expression associations in human diseases; (iii) important biological functions driven by disease-related lncRNAs in human diseases; (iv) lncRNA–target regulations responsible for drug resistance or sensitivity in human diseases and (v) lncRNA microarray, lncRNA sequence data and transcriptome data of an 11 373 pan-cancer patient cohort from TCGA to help characterize the functional dynamics of these lncRNA–target regulations. LncTarD also provides a user-friendly interface to conveniently browse, search, and download data. LncTarD will be a useful resource platform for the further understanding of functions and molecular mechanisms of lncRNA deregulation in human disease, which will help to identify novel and sensitive biomarkers and therapeutic targets.


2020 ◽  
Author(s):  
Guoxia Wen ◽  
Tong Zhou ◽  
Wanjun Gu

Abstract Circular RNA (circRNA) is a novel class of single-stranded RNAs with a closed loop structure. The majority of circRNAs are formed by a back-splicing process in pre-mRNA splicing. Their expression is dynamically regulated and shows spatiotemporal patterns among cell types, tissues and developmental stages. CircRNAs have important biological functions in many physiological processes, and their aberrant expression is implicated in many human diseases. Due to their high stability, circRNAs are becoming promising biomarkers in many human diseases, such as cardiovascular diseases, autoimmune diseases and human cancers. In this review, we focus on the translational potential of using human blood circRNAs as liquid biopsy biomarkers for human diseases. We highlight their abundant expression, essential biological functions and significant correlations to human diseases in various components of peripheral blood, including whole blood, blood cells and extracellular vesicles. In addition, we summarize the current knowledge of blood circRNA biomarkers for disease diagnosis or prognosis.


2020 ◽  
Author(s):  
Prabir Khatua ◽  
Alan J Ray ◽  
Ulrich H. E. Hansmann

AbstractLymphotactin (Ltn) exists under physiological conditions in an equilibrium between two interconverting structures with distinct biological functions. Using Replica-Exchange-with-Tunneling we study the conversion between the two folds. Unlike previously proposed, we find that the fold switching does not require unfolding of Lymphotactin, but proceeds through a series of intermediates that remain partially structured. This process relies on two bifurcated hydrogen bonds that connect the β2 and β3 strands and eases the transition between the hydrogen bond pattern by which the central three-stranded β-sheet in the two forms differ.


2021 ◽  
pp. 77-102
Author(s):  
Ming-Liang He ◽  
Qianya Wan ◽  
Dan Song ◽  
Betsy He

1987 ◽  
Vol 65 (1) ◽  
pp. 154-167 ◽  
Author(s):  
Nicole Benhamou ◽  
G. B. Ouellete

Morphology, ultrastructure, and some aspects of the chemical composition of a fibrillar sheath surrounding cells of the fungus Ascocalyx abietina (Lagerberg.) Schlaepfer-Bernhard were studied using electron microscopy and gold-labeled ligands. Although consistently present around all cells, the fibrillar matrix was found to vary greatly in morphology within the same isolate, depending apparently on age and (or) physiological conditions of the cells. Around cells considered younger, the sheath appeared always to be constituted of fibrillar masses that varied in size and shape but were delineated by a well-defined border. In contrast, cells expected to be older were generally bordered by a regular and uniform matrix composed of numerous intertwined fine fibrils, some being associated with small osmiophilic knobs. The presence of RNA in the denser layers of the sheath was revealed through gold complexes with either RNase A or RNase B. Continuity of portions of the sheath with similar material surrounding endocells or intact cells through gaps in the wall was frequently observed. This observation was considered as one of the possible explanations for the presence of RNA in the sheath. Association of sugars such as β-glucopyranosides and especially sialic acid with the extracellular matrix is, most probably, relevant to specific biological functions such as attachment to host cells, protection against unfavourable physical conditions and transport of cationic compounds. Peculiarities of this sheath produced by A. abietina contribute, therefore, to distinguish it from those described in other fungi.


2021 ◽  
Vol 12 ◽  
Author(s):  
Julia S. Steinhoff ◽  
Achim Lass ◽  
Michael Schupp

Retinol binding protein 4 (RBP4) is a member of the lipocalin family and the major transport protein of the hydrophobic molecule retinol, also known as vitamin A, in the circulation. Expression of RBP4 is highest in the liver, where most of the body’s vitamin A reserves are stored as retinyl esters. For the mobilization of vitamin A from the liver, retinyl esters are hydrolyzed to retinol, which then binds to RBP4 in the hepatocyte. After associating with transthyretin (TTR), the retinol/RBP4/TTR complex is released into the bloodstream and delivers retinol to tissues via binding to specific membrane receptors. So far, two distinct RBP4 receptors have been identified that mediate the uptake of retinol across the cell membrane and, under specific conditions, bi-directional retinol transport. Although most of RBP4’s actions depend on its role in retinoid homeostasis, functions independent of retinol transport have been described. In this review, we summarize and discuss the recent findings on the structure, regulation, and functions of RBP4 and lay out the biological relevance of this lipocalin for human diseases.


Author(s):  
Mudasir Nazir Bhat ◽  
Bikarma Singh ◽  
Mohammed Asif Chowdhary ◽  
Sumit Singh ◽  
Opender Surmal ◽  
...  

2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Ting Zhang ◽  
Yaoyao Lu ◽  
Shaozheng Song ◽  
Rui Lu ◽  
Minya Zhou ◽  
...  

Abstract Gene mutations at different gene sites will produce totally different phenotypes or biological functions in gene-edited animals. An allelic series of mutations in the myostatin (MSTN) gene can cause the ‘double-muscling’ phenotype. Although there have been many studies performed on MSTN-mutant animals, there have been few studies that have investigated the cystine-knot motif in exon 3 of MSTN in rabbits. In the current study, CRISPR/Cas9 sgRNA anchored exon 3 of a rabbit’s MSTN was used to disrupt the cystine-knot motif to change the MSTN construction and cause a loss of its function. Eleven MSTN-KO founder rabbits were generated, and all of them contained biallelic modifications. Various mutational MSTN amino acid sequences of the 11 founder rabbits were modeled to the tertiary structure using the SWISS-MODEL, and the results showed that the structure of the cystine-knot motif of each protein in the founder rabbits differed from the wild-type (WT). The MSTN-KO rabbits displayed an obvious ‘double-muscling’ phenomena, with a 20−30% increase in body weight compared with WT rabbits. In the MSTN-KO rabbits, all of the MSTN−/− rabbits showed teeth dislocation and tongue enlargement, and the percentage of rabbits having pelvic tilt was 0% in MSTN+/+, 0% in MSTN+/−, 77.78% in female MSTN−/− rabbits, and 37.50% in male MSTN−/− rabbits. The biomechanical mechanism of pelvic tilt and teeth dislocation in the MSTN-KO rabbits requires further investigation. These newly generated MSTN-KO rabbits will serve as an important animal model, not only for studying skeletal muscle development, but also for biomedical studies in pelvic tilt correction and craniofacial research.


Sign in / Sign up

Export Citation Format

Share Document