scholarly journals Histamine, Metabolic Remodelling and Angiogenesis: A Systems Level Approach

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 415
Author(s):  
Aurelio A. Moya-García ◽  
Almudena Pino-Ángeles ◽  
Francisca Sánchez-Jiménez ◽  
José Luis Urdiales ◽  
Miguel Ángel Medina

Histamine is a highly pleiotropic biogenic amine involved in key physiological processes including neurotransmission, immune response, nutrition, and cell growth and differentiation. Its effects, sometimes contradictory, are mediated by at least four different G-protein coupled receptors, which expression and signalling pathways are tissue-specific. Histamine metabolism conforms a very complex network that connect many metabolic processes important for homeostasis, including nitrogen and energy metabolism. This review brings together and analyses the current information on the relationships of the “histamine system” with other important metabolic modules in human physiology, aiming to bridge current information gaps. In this regard, the molecular characterization of the role of histamine in the modulation of angiogenesis-mediated processes, such as cancer, makes a promising research field for future biomedical advances.

2021 ◽  
Vol 12 ◽  
Author(s):  
Roberta Lattanzi ◽  
Cinzia Severini ◽  
Daniela Maftei ◽  
Luciano Saso ◽  
Aldo Badiani

The prokineticin (PK) family, prokineticin 1 and Bv8/prokineticin 2 (PROK2), initially discovered as regulators of gastrointestinal motility, interacts with two G protein-coupled receptors, PKR1 and PKR2, regulating important biological functions such as circadian rhythms, metabolism, angiogenesis, neurogenesis, muscle contractility, hematopoiesis, immune response, reproduction and pain perception. PROK2 and PK receptors, in particular PKR2, are widespread distributed in the central nervous system, in both neurons and glial cells. The PROK2 expression levels can be increased by a series of pathological insults, such as hypoxia, reactive oxygen species, beta amyloid and excitotoxic glutamate. This suggests that the PK system, participating in different cellular processes that cause neuronal death, can be a key mediator in neurological/neurodegenerative diseases. While many PROK2/PKRs effects in physiological processes have been documented, their role in neuropathological conditions is not fully clarified, since PROK2 can have a double function in the mechanisms underlying to neurodegeneration or neuroprotection. Here, we briefly outline the latest findings on the modulation of PROK2 and its cognate receptors following different pathological insults, providing information about their opposite neurotoxic and neuroprotective role in different pathological conditions.


2019 ◽  
Vol 119 (04) ◽  
pp. 534-541 ◽  
Author(s):  
Selin Gencer ◽  
Emiel van der Vorst ◽  
Maria Aslani ◽  
Christian Weber ◽  
Yvonne Döring ◽  
...  

AbstractInflammation has been well recognized as one of the main drivers of atherosclerosis development and therefore cardiovascular diseases (CVDs). It has been shown that several chemokines, small 8 to 12 kDa cytokines with chemotactic properties, play a crucial role in the pathophysiology of atherosclerosis. Chemokines classically mediate their effects by binding to G-protein-coupled receptors called chemokine receptors. In addition, chemokines can also bind to atypical chemokine receptors (ACKRs). ACKRs fail to induce G-protein-dependent signalling pathways and thus subsequent cellular response, but instead are able to internalize, scavenge or transport chemokines. In this review, we will give an overview of the current knowledge about the involvement of ACKR1–4 in CVDs and especially in atherosclerosis development. In the recent years, several studies have highlighted the importance of ACKRs in CVDs, although there are still several controversies and unexplored aspects that have to be further elucidated. A better understanding of the precise role of these atypical receptors may pave the way towards novel and improved therapeutic strategies.


2013 ◽  
Vol 41 (1) ◽  
pp. 166-171 ◽  
Author(s):  
Marta Busnelli ◽  
Erika Peverelli ◽  
Giovanna Mantovani ◽  
Anna Spada ◽  
Bice Chini

Receptor coupling to different G-proteins and β-arrestins has been described for a number of GPCRs (G-protein-coupled receptors), suggesting a multi-state model of receptor activation in which each receptor can assume a number of different active conformations, each capable of promoting the coupling to a specific effector. Consistently, functional-selective ligands and biased agonists have been described to be able to induce and/or stabilize only a subset of specific active conformations. Furthermore, GPCR mutants deficient in selective coupling have been reported. Functional selective ligands and receptor mutants thus constitute unique tools to dissect the specific roles of different effectors, in particular among the Gi/o family. In the present mini-review, we focus on (i) the identification of functional selective OXT (oxytocin)-derived peptides capable of activating single Gi/o isoforms, namely Gi1 or Gi3; and (ii) the characterization of an SS (somatostatin) receptor SST5 mutant selectively impaired in its GoA coupling. These analogues and receptor mutants represent unique tools for examining the contribution of Gi/o isoforms in complex biological responses and open the way for the development of drugs with peculiar selectivity profiles.


2021 ◽  
Author(s):  
Bettina Lengger ◽  
Emma E. Hoch-Schneider ◽  
Christina Noerskov ◽  
Tadas Jakociunas ◽  
Emil D. Jensen ◽  
...  

Serotonin is a key neurotransmitter involved in numerous physiological processes and serves as an important precursor for manufacturing bioactive indoleamines and alkaloids used in the treatment of human pathologies. In humans, serotonin sensing and signaling can occur by 12 G protein-coupled receptors (GPCRs) coupled to G proteins. To systematically assess serotonin GPCR signaling, we characterized reporter gene expression of a 144-sized library encoding all 12 human serotonin GPCRs in combination with 12 different Gα proteins in yeast exposed to serotonin. For the 5-HT4 receptor, we observe 25- and 64-fold changes in EC50 values and dynamic reporter gene outputs, respectively. Furthermore, we show that optimal biosensing designs enable high-resolution sensing of serotonin produced in yeast, as well as provide a platform for characterization of 19 serotonin GPCR polymorphisms found in human populations. Taken together, our study highlights serotonin biosensing modalities of relevance to both biotechnological and human health applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuya Yoshida ◽  
Naoya Matsunaga ◽  
Takaharu Nakao ◽  
Kengo Hamamura ◽  
Hideaki Kondo ◽  
...  

AbstractDysfunction of the circadian clock has been implicated in the pathogenesis of cardiovascular disease. The CLOCK protein is a core molecular component of the circadian oscillator, so that mice with a mutated Clock gene (Clk/Clk) exhibit abnormal rhythms in numerous physiological processes. However, here we report that chronic kidney disease (CKD)-induced cardiac inflammation and fibrosis are attenuated in Clk/Clk mice even though they have high blood pressure and increased serum angiotensin II levels. A search for the underlying cause of the attenuation of heart disorder in Clk/Clk mice with 5/6 nephrectomy (5/6Nx) led to identification of the monocytic expression of G protein-coupled receptor 68 (GPR68) as a risk factor of CKD-induced inflammation and fibrosis of heart. 5/6Nx induces the expression of GPR68 in circulating monocytes via altered CLOCK activation by increasing serum levels of retinol and its binding protein (RBP4). The high-GPR68-expressing monocytes have increased potential for producing inflammatory cytokines, and their cardiac infiltration under CKD conditions exacerbates inflammation and fibrosis of heart. Serum retinol and RBP4 levels in CKD patients are also sufficient to induce the expression of GPR68 in human monocytes. Our present study reveals an uncovered role of monocytic clock genes in CKD-induced heart failure.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Neil N. Patel ◽  
Alan D. Workman ◽  
Noam A. Cohen

Evidence is emerging that shows taste receptors serve functions outside of taste sensation of the tongue. Taste receptors have been found in tissue across the human body, including the gastrointestinal tract, bladder, brain, and airway. These extraoral taste receptors appear to be important in modulating the innate immune response through detection of pathogens. This review discusses taste receptor signaling, focusing on the G-protein–coupled receptors that detect bitter and sweet compounds in the upper airway epithelium. Emphasis is given to recent studies which link the physiology of sinonasal taste receptors to clinical manifestation of upper airway disease.


2016 ◽  
Vol 44 (2) ◽  
pp. 562-567 ◽  
Author(s):  
Andrew M. Ellisdon ◽  
Michelle L. Halls

With >800 members, G protein-coupled receptors (GPCRs) are the largest class of cell-surface signalling proteins, and their activation mediates diverse physiological processes. GPCRs are ubiquitously distributed across all cell types, involved in many diseases and are major drug targets. However, GPCR drug discovery is still characterized by very high attrition rates. New avenues for GPCR drug discovery may be provided by a recent shift away from the traditional view of signal transduction as a simple chain of events initiated from the plasma membrane. It is now apparent that GPCR signalling is restricted to highly organized compartments within the cell, and that GPCRs activate distinct signalling pathways once internalized. A high-resolution understanding of how compartmentalized signalling is controlled will probably provide unique opportunities to selectively and therapeutically target GPCRs.


Author(s):  
Gayathri Viswanathan ◽  
Argen Mamazhakypov ◽  
Ralph T. Schermuly ◽  
Sudarshan Rajagopal

2021 ◽  
Author(s):  
Matthias Schlichting ◽  
Shlesha Richhariya ◽  
Nicholas Herndon ◽  
Dingbang Ma ◽  
Jason Xin ◽  
...  

The metronome-like circadian regulation of sleep timing must still adapt to an uncertain environment. Recent studies in Drosophila indicate that neuromodulation not only plays a key role in clock neuron synchronization but also affects interactions between the clock network and brain sleep centers. We show here that the targets of neuromodulators, G-Protein Coupled Receptors (GPCRs), are highly enriched in the fly brain circadian clock network. Single cell sequencing indicates that they are not only differentially expressed but also define clock neuron identity. We generated a comprehensive guide library to mutagenize individual GPCRs in specific neurons and verified the strategy with a targeted sequencing approach. Combined with a behavioral screen, the mutagenesis strategy revealed a novel role of dopamine in sleep regulation by identifying two dopamine receptors and a clock neuron subpopulation that gate the timing of sleep.


Sign in / Sign up

Export Citation Format

Share Document