scholarly journals Curcumin Reverses NNMT-Induced 5-Fluorouracil Resistance via Increasing ROS and Cell Cycle Arrest in Colorectal Cancer Cells

Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1295
Author(s):  
Guoli Li ◽  
Sining Fang ◽  
Xiao Shao ◽  
Yejia Li ◽  
Qingchao Tong ◽  
...  

Nicotinamide N-methyltransferase (NNMT) plays multiple roles in improving the aggressiveness of colorectal cancer (CRC) and enhancing resistance to 5-Fluorouracil (5-FU), making it an attractive therapeutic target. Curcumin (Cur) is a promising natural compound, exhibiting multiple antitumor effects and potentiating the effect of 5-FU. The aim of the present study is to explore the effect of Cur on attenuating NNMT-induced resistance to 5-FU in CRC. A panel of CRC cell lines with different NNMT expressions are used to characterize the effect of Cur. Herein, it is observed that Cur can depress the expression of NNMT and p-STAT3 in CRC cells. Furthermore, Cur can induce inhibition of cell proliferation, G2/M phase cell cycle arrest, and reactive oxygen species (ROS) generation, especially in high-NNMT-expression CRC cell lines. Cur can also re-sensitize high-NNMT-expression CRC cells to 5-FU both in vitro and in vivo. In summary, it is proposed that Cur can reverse NNMT-induced cell proliferation and 5-FU resistance through ROS generation and cell cycle arrest. Given that Cur has long been used, we suppose that Cur is a promising anticancer drug candidate with minimal side effects for human CRC therapy and can attenuate NNMT-induced resistance to 5-FU.

2018 ◽  
Vol 243 (14) ◽  
pp. 1133-1140
Author(s):  
Ling Chen ◽  
Ting Zhang ◽  
Qiuli Liu ◽  
Mei Tang ◽  
Yu’e Yang ◽  
...  

Buformin is a commonly used hypoglycemic agent, and numerous studies have shown that buformin has potent antitumor effects in several malignancies. In this study, we aimed to assess the cytotoxic effect of buformin combined with ionizing radiation (IR) on two human cervical cancer cell lines (Hela and Siha). Cytotoxicity was detected by colony formation assays; impacts on the cell cycle and apoptosis were detected by flow cytometric analyses. Changes in histone H2AX (γ-H2AX) phosphorylation and impacts on the AMPK/S6 pathway were also explored. Our data show that the combination of buformin and IR had a much stronger antiproliferative effect and resulted in more apoptosis than did buformin or IR alone. Combination treatment with a low dose of buformin (10 µM) and IR (4 Gy) caused G2/M-phase cell cycle arrest. Consistent with these findings, Western blotting showed that the combination of buformin and IR activated AMPK and suppressed S6. In addition, delayed disappearance of γ-H2AX was detected by immunofluorescence in cervical cancer cells treated with buformin plus IR. Taken together, the data indicate that the combination of a low concentration of buformin and IR increases the radiosensitivity of cervical cancer cells via cell cycle arrest and inhibition of DNA repair. Based on these results, we strongly support the use of buformin as an effective agent for improving IR treatment efficiency in the context of cervical cancer. Impact statement Our idea originated in the thought of discovering new effects of old drugs. Although this study is a basic research, it is very close to clinical treatment. Flow cytometry and immunofluorescence were used to verify that buformin increases radiosensitivity. We aimed to address one of the thorniest problems in treatment process. Based on discovering new effects of old drugs, it is feasible to use buformin as an anticancer drug in clinical application. This will provide new ideas for clinical treatment.


2020 ◽  
Vol 39 (12) ◽  
pp. 1681-1689
Author(s):  
S Yin ◽  
H Yang ◽  
X Zhao ◽  
S Wei ◽  
Y Tao ◽  
...  

Artesunate (ARS) has been shown to be highly effective against chloroquine-resistant malaria. In vitro studies reported that ARS has anticancer effects; however, its detrimental action on cancer cells may also play a role in its toxicity toward normal cells and its potential toxicity has not been sufficiently researched. In this study, we investigated the possible cytotoxic effects using normal BRL-3A and AML12 liver cells. The results showed that ARS dose-dependently inhibited cell proliferation and arrested the G0/G1 phase cell cycle in both BRL-3A and AML12 liver cells. Western blotting demonstrated that ARS induced a significant downregulation of cyclin-dependent kinase-2 (CDK2), CDK4, cyclin D1, and cyclin E1 in various levels and then caused apoptosis when the Bcl-2/Bax ratio decreased. Conversely, the levels of intracellular reactive oxygen species (ROS) were increased. The ROS scavenger N-acetylcysteine can significantly inhibit cell cycle arrest and apoptosis induced by ARS. Thus, the data confirmed that ARS exposure impairs normal liver cell proliferation by inducing G0/G1 cell cycle arrest and apoptosis, and this detrimental action may be associated with intracellular ROS accumulation. Collectively, the possible side effects of ARS on healthy normal cells cannot be neglected when developing therapies.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Song-yang Xi ◽  
Yu-hao Teng ◽  
Yan Chen ◽  
Jie-ping Li ◽  
Ying-ying Zhang ◽  
...  

Jianpi Huayu Decoction (JHD), a Chinese medicine formula, is a typical prescription against multiple tumors in the clinical treatment, which can raise quality of life and decrease complications. The aim of this study is to assess the efficacy of JHD against human colorectal carcinoma cells (SW480) and explore its mechanism. MTT assay showed that JHD decreased the cellular viability of SW480 cells in dose-dependent and time-dependent manner. Flow cytometry analysis revealed that JHD induced G0/G1-phase cell cycle arrest in SW480 cells and had a strong apoptosis-inducing effect on SW480 cells. Meanwhile it enhanced the expression of p27, cleaved PARP, cleaved caspase-3, and Bax and decreased the levels of PARP, caspase-3, Bcl-2, CDK2, CDK4, CDK6, cyclin D1, cyclin D2, cyclin D3, and cyclin E1, which was evidenced by RT-qPCR and Western blot analysis. In conclusion, these results indicated that JHD inhibited proliferation in SW480 cells by inducing G0/G1-phase cell cycle arrest and apoptosis, providing a practicaltherapeutic strategy against colorectal cancer.


2004 ◽  
Vol 134 (11) ◽  
pp. 3121-3126 ◽  
Author(s):  
James M. Visanji ◽  
Susan J. Duthie ◽  
Lynn Pirie ◽  
David G. Thompson ◽  
Philip J. Padfield

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4282-4282
Author(s):  
Yan Chen ◽  
Bao-An Chen ◽  
Qing-long Guo

Abstract Abstract 4282 Objective: To evaluate the antileukemic effect of wogonoside and reveal the underlying mechanism. Method: In this study trypan blue dye exclusion assay, MTT assay, and soft agar colony formation assay were used to analysis growth inhibition of wogonoside the on AML (acute human promyelocytic) cell lines. Propidium iodide (PI)-staining and cell cycle-regulatory proteins detecting by western blots were applied to exam whether wogonoside could induce cell cycle arrest. Then a series of experiment were used to assess the ability of wogonoside to overcome the AML associated differentiation block, by using Giemsa staining, Nitroblue tetrazolium (NBT) reduction assay, and cell-surface differentiation antigens expression analysis. Real time PCR, western blots, cycloheximide inhibition test and RNA interference, nuclear and cytoplasmic fractionation, immunofluorescent staining were used to investigate the underlying mechanism. In this point we mainly focus that wogonoside exerts antileukemic by modulating of PLSCR1 gene expression, as well as influence its subcellular localization to play a role in regulating gene transcription. Result: It was demonstrated that wogonoside have the capacity to decrease the growth of myeloid cell lines by induction of G0/1 phase cell cycle arrest and differentiation. This effect is mediated by the increasing in mRNA and up-regulating protein expression of phospholipids scramblase 1 (PLSCR1). Meanwhile wogonoside promoted PLSCR1 traffic into the nucleus, which let PLSCR1 to play a role in regulating cell cycle and differentiation-related genes transcription including p21, p27, c-myc and IP3R1. Conclusion: Wogonoside induced AML cell lines to undergo differentiation and G1 phase arrest by restricting phospholipid scramblase 1 gene expression and promoting its translocation into nuclear. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 38 (3) ◽  
pp. 1783-1789 ◽  
Author(s):  
Na Lam Hwang ◽  
Yong Jung Kang ◽  
Bokyung Sung ◽  
Seong Yeon Hwang ◽  
Jung Yoon Jang ◽  
...  

2018 ◽  
Vol Volume 11 ◽  
pp. 2409-2417 ◽  
Author(s):  
Longfei Yang ◽  
Huanran Liu ◽  
Min Long ◽  
Xi Wang ◽  
Fang Lin ◽  
...  

2022 ◽  
Author(s):  
Ningning Chen ◽  
Yifang Jiang ◽  
Yi Yang ◽  
Ziyi Zhao ◽  
Chong Xiao ◽  
...  

Abstract Objective: Combinatorial natural products have high application potential for treatment of complex diseases owing to their synergistic effects and multi-targeting effect. However, studies have not explored the therapeutic effect and the synergetic mechanisms of action combinations of natural products. The present study aimed sought to evaluate the synergistic antitumor effects of a combination of Berberine and Evodiamine, and explore the drug effect on proliferation, migration, invasion of HCT116 and RKO human colorectal cancer cells. Results: The effect of berberine and evodiamine at a specific paired dose (BER30μM, EVO 0.8μM) was explored. A combination of berberine and evodiamine had no effect on activity and proliferation of HCT116 and RKO cells. The combination regulates the cell cycle of HCT116 and RKO cells at different cell phases. Berberine mainly blocked the cell cycle at G0/G1 phase, whereas evodiamine induced cell cycle arrest at G2/M phase. The results showed that the combined effect of berberine and evodiamine does not offset each other, but plays a synergistic role in regulation of colon cancer cell cycle. Western blot analysis showed that the combination of berberine and evodiamine regulated cell cycle by downregulating expression of cdc25c and upregulating expression of p21. The combination significantly inhibited cell migration and invasion by regulating EMT related proteins, upregulating expression of E-cadherin and downregulating expression of N-cadherin. The combination of berberine and evodiamine significantly inhibited phosphorylation of P38 MAPK in HCT116 and RKO cells, and further inhibited phosphorylation of the downstream MAPKAPK2 and HSP27, thus playing a synergistic anti-colon cancer role.Conclusion: Berberine and Evodiamine exhibit synergistic antitumor effects by suppressing cell proliferation, inducing cell cycle arrest and inhibiting EMT by modulating P38MAPK /MAPKAPK2/HSP27 pathway.Significance of the study: To illustrate the potential mechanism of formula-based combination of natural products, and explore the potential applications of the combination and possible antitumor therapeutic targets.


2020 ◽  
Author(s):  
Xi Su ◽  
Jiaxin Liu ◽  
Haihong Zhang ◽  
Qingqing Gu ◽  
Xinrui Zhou ◽  
...  

Abstract Background Anaplastic thyroid cancer (ATC) is a kind of rare thyroid cancer with very poor prognosis. It is one of the deadliest cancers in human due to the aggressive behavior and resistance to treatment. Doxorubicin has been approved in ATC treatment as a single agent, but monotherapy still shows no improvement of the total survival in advanced ATC. Lenvatinib was investigated with encouraging results in treating the patients with radioiodine-refractory differentiated thyroid cancer (DTC). However, antitumor efficacy of combination therapy with lenvatinib and doxorubicin remains largely unclear. Methods The antitumor efficacy of combination therapy with lenvatinib and doxorubicin on ATC cell proliferation and was assessed by the MTT assay and colony formation. Flow cytometry were employed to assess ATC cells’ apoptosis and cell cycle arrest in response to combination therapy. Xenograft models were used to test its in vivo antitumor activity. Result Lenvatinib monotherapy was less effective than doxorubicin in treating ATC cell lines and xenografts model. The combination therapy of lenvatinib and doxorubicin significantly inhibited ATC cell proliferation and tumor growth in nude mice, and induced cell apoptosis and cell cycle arrest in compared to lenvatinib or doxorubicin monotherapy. Conclusion Lenvatinib promotes the antitumor effects of doxorubicin in ATC cell and xenografts model. Lenvatinib/doxorubicin combination may be a potential candidate therapeutic approach for ATC.


Sign in / Sign up

Export Citation Format

Share Document