scholarly journals Inhibition of Astrocytic Histamine N-Methyltransferase as a Possible Target for the Treatment of Alzheimer’s Disease

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1408
Author(s):  
Cecilia Flores-Clemente ◽  
María Inés Nicolás-Vázquez ◽  
Elvia Mera Jiménez ◽  
Maricarmen Hernández-Rodríguez

Alzheimer’s disease (AD) represents the principal cause of dementia among the elderly. Great efforts have been established to understand the physiopathology of AD. Changes in neurotransmitter systems in patients with AD, including cholinergic, GABAergic, serotoninergic, noradrenergic, and histaminergic changes have been reported. Interestingly, changes in the histaminergic system have been related to cognitive impairment in AD patients. The principal pathological changes in the brains of AD patients, related to the histaminergic system, are neurofibrillary degeneration of the tuberomammillary nucleus, the main source of histamine in the brain, low histamine levels, and altered signaling of its receptors. The increase of histamine levels can be achieved by inhibiting its degrading enzyme, histamine N-methyltransferase (HNMT), a cytoplasmatic enzyme located in astrocytes. Thus, increasing histamine levels could be employed in AD patients as co-therapy due to their effects on cognitive functions, neuroplasticity, neuronal survival, neurogenesis, and the degradation of amyloid beta (Aβ) peptides. In this sense, the evaluation of the impact of HNMT inhibitors on animal models of AD would be interesting, consequently highlighting its relevance.

2012 ◽  
Vol 25 (3) ◽  
pp. 341-344 ◽  
Author(s):  
David A. Scott ◽  
Brendan S. Silbert ◽  
Lisbeth A. Evered

It has long been observed that some patients suffer a significant cognitive impact following anesthesia and surgery. This should not be surprising when considering that not only is the target organ for general anesthetic agents the brain itself but also that the process of anesthesia is a form of deep, pharmacologically induced coma rather than “sleep.” The expectation that such a process should be fully reversible with transient neurophysiological effects contradicts our experience with repeated abuse of other central nervous system depressants such as glue, petrol, and alcohol. Of great concern is that, while approximately 10% of populations in developed countries undergo anesthesia and surgery of some form each year, the proportion of the elderly making up this group is much greater. In addition, it is the elderly who are potentially at a greater risk of cognitive impairment following such procedures because many have decreased cognitive reserve, either due to pre-existing mild cognitive impairment (MCI) or frank dementia, which may be diagnosed or unknown. The impact of anesthesia on these individuals is poorly understood, as are the implications of the emerging laboratory data that suggest an effect of anesthetic agents on the pathological processes of Alzheimer's Disease (AD) itself.


2021 ◽  
Vol 18 ◽  
Author(s):  
Sarama Saha ◽  
Sukhpal Singh ◽  
Suvarna Prasad ◽  
Amit Mittal ◽  
Anil Kumar Sharma ◽  
...  

: Alzheimer’s disease (AD) is characterized by progressive death of neuronal cells in the regions of the brain concerned with memory and cognition, and is the major cause of dementia in the elderly population. Various molecular mechanisms, metabolic risk factors and environmental triggers contributing to the genesis and progression of AD are under intense investigations. The present review has dealt with the impact of a highly discussed topic of gut microbiota affecting the neurodegeneration in the AD brain. A detailed description of the composition of gut bacterial flora and its interaction with the host has been presented, followed by an analysis of key concepts of bi- directional communication between gut microbiota and the brain. The substantial experimental evidence of gut microbiota affecting the neurodegenerative process in experimental AD models has been described next in this review, and finally, the limitations of such experimental studies vis-a- vis the actual disease and the paucity of clinical data on this topic have also been mentioned.


2018 ◽  
Vol 15 (2) ◽  
pp. 104-110 ◽  
Author(s):  
Shohei Kato ◽  
Akira Homma ◽  
Takuto Sakuma

Objective: This study presents a novel approach for early detection of cognitive impairment in the elderly. The approach incorporates the use of speech sound analysis, multivariate statistics, and data-mining techniques. We have developed a speech prosody-based cognitive impairment rating (SPCIR) that can distinguish between cognitively normal controls and elderly people with mild Alzheimer's disease (mAD) or mild cognitive impairment (MCI) using prosodic signals extracted from elderly speech while administering a questionnaire. Two hundred and seventy-three Japanese subjects (73 males and 200 females between the ages of 65 and 96) participated in this study. The authors collected speech sounds from segments of dialogue during a revised Hasegawa's dementia scale (HDS-R) examination and talking about topics related to hometown, childhood, and school. The segments correspond to speech sounds from answers to questions regarding birthdate (T1), the name of the subject's elementary school (T2), time orientation (Q2), and repetition of three-digit numbers backward (Q6). As many prosodic features as possible were extracted from each of the speech sounds, including fundamental frequency, formant, and intensity features and mel-frequency cepstral coefficients. They were refined using principal component analysis and/or feature selection. The authors calculated an SPCIR using multiple linear regression analysis. Conclusion: In addition, this study proposes a binary discrimination model of SPCIR using multivariate logistic regression and model selection with receiver operating characteristic curve analysis and reports on the sensitivity and specificity of SPCIR for diagnosis (control vs. MCI/mAD). The study also reports discriminative performances well, thereby suggesting that the proposed approach might be an effective tool for screening the elderly for mAD and MCI.


2020 ◽  
Vol 45 (2) ◽  
Author(s):  
Arpita Chakraborty ◽  
Samir Kumar Praharaj ◽  
R. V. Krishnananda Prabhu ◽  
M. Mukhyaprana Prabhu

AbstractBackgroundMore than half portion of the brain is formed by lipids. They play critical roles in maintaining the brain's structural and functional components. Any dysregulation in these brain lipids can lead to cognitive dysfunction which are associated with neurological disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, vascular dementia etc. Studies have linked lipids with cognitive impairment. But not much has been studied about the complex brain lipids which might play a pivotal role in cognitive impairment. This review aims to highlight the lipidomic profiles in patients with cognitive dysfunction.ResultsForty-five articles were reviewed. These studies show alterations in complex lipids such as sphingolipids, phospholipids, glycolipids and sterols in brain in various neurological disorders such as vascular dementia, Parkinson's and Alzheimer's disease. However, the classes of fatty acids in these lipids involved are different across studies.ConclusionsThere is a need for targeted lipidomics analysis, specifically including sphingolipids in patients with neurodegenerative disorders so as to improve diagnostics as well as management of these disorders.


2021 ◽  
Vol 20 ◽  
Author(s):  
Choy Ker Woon ◽  
Wong Kah Hui ◽  
Razif Abas ◽  
Muhammad Huzaimi Haron ◽  
Srijit Das ◽  
...  

: Alzheimer's disease (AD) affects the elderly and is characterized by progressive neurodegeneration caused by different pathologies. The most significant challenges in treating AD include the inability of medications to reach the brain because of its poor solubility, low bioavailability, and the presence of the blood-brain barrier (BBB). Additionally, current evidence suggests the disruption of BBB plays an important role in the pathogenesis of AD. One of the critical challenges in treating AD is the ineffective treatments and its severe adverse effects. Nanotechnology offers an alternative approach to facilitate the treatment of AD by overcoming the challenges in drug transport across the BBB. Various nanoparticles (NP) loaded with natural products were reported to aid in drug delivery for the treatment of AD. The nano- sized entities of NP are great platforms for incorporating active materials from natural products into formulations that can be delivered effectively to the intended action site without compromising the material’s bioactivity. The review highlights the applications of medicinal plants, their derived components, and various nanomedicine-based approaches for the treatment of AD. The combination of medicinal plants and nanotechnology may lead to new theragnostic solutions for the treatment of AD in the future.


2021 ◽  
Vol 18 ◽  
Author(s):  
Rosanna Squitti ◽  
Mariacarla Ventriglia ◽  
Alberto Granzotto ◽  
Stefano L. Sensi ◽  
Mauro Ciro Antonio Rongioletti

: Alzheimer’s disease (AD) is a type of dementia very common in the elderly. A growing body of recent evidence has linked AD pathogenesis to copper (Cu) dysmetabolism in the body. In fact, a subset of patients affected either by AD or by its prodromal form known as Mild Cognitive Impairment (MCI) have been observed to be unable to maintain a proper balance of Cu metabolism and distribution and are characterized by the presence in their serum of increased levels of Cu not bound to ceruloplasmin (non-ceruloplasmin Cu). Since serum non-ceruloplasmin Cu is a biomark- er of Wilson's disease (WD), a well-known condition of Cu-driven toxicosis, in this review, we pro- pose that in close analogy with WD, the assessment of non-ceruloplasmin Cu levels can be exploit- ed as a cost-effective stratification and susceptibility/risk biomarker for the identification of some AD/MCI individuals. The approach can also be used as an eligibility criterion for clinical trials aim- ing at investigating Cu-related interventions against AD/MCI.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Corona Solana ◽  
Raquel Tarazona ◽  
Rafael Solana

Alzheimer’s disease (AD) represents the most common cause of dementia in the elderly. AD is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although the aetiology of AD is not clear, both environmental factors and heritable predisposition may contribute to disease occurrence. In addition, inflammation and immune system alterations have been linked to AD. The prevailing hypothesis as cause of AD is the deposition in the brain of amyloid beta peptides (Aβ). Although Aβ have a role in defending the brain against infections, their accumulation promotes an inflammatory response mediated by microglia and astrocytes. The production of proinflammatory cytokines and other inflammatory mediators such as prostaglandins and complement factors favours the recruitment of peripheral immune cells further promoting neuroinflammation. Age-related inflammation and chronic infection with herpes virus such as cytomegalovirus may also contribute to inflammation in AD patients. Natural killer (NK) cells are innate lymphoid cells involved in host defence against viral infections and tumours. Once activated NK cells secrete cytokines such as IFN-γ and TNF-α and chemokines and exert cytotoxic activity against target cells. In the elderly, changes in NK cell compartment have been described which may contribute to the lower capacity of elderly individuals to respond to pathogens and tumours. Recently, the role of NK cells in the immunopathogenesis of AD is discussed. Although in AD patients the frequency of NK cells is not affected, a high NK cell response to cytokines has been described together with NK cell dysregulation of signalling pathways which is in part involved in this altered behaviour.


2017 ◽  
Author(s):  
J. Rasero ◽  
C. Alonso-Montes ◽  
I. Diez ◽  
L. Olabarrieta-Landa ◽  
L. Remaki ◽  
...  

AbstractAlzheimer’s disease (AD) is a chronically progressive neurodegenerative disease highly correlated to aging. Whether AD originates by targeting a localized brain area and propagates to the rest of the brain across disease-severity progression is a question with an unknown answer. Here, we aim to provide an answer to this question at the group-level by looking at differences in diffusion-tensor brain networks. In particular, making use of data from Alzheimer's Disease Neuroimaging Initiative (ADNI), four different groups were defined (all of them matched by age, sex and education level): G1 (N1=36, healthy control subjects, Control), G2 (N2=36, early mild cognitive impairment, EMCI), G3 (N3=36, late mild cognitive impairment, LMCI) and G4 (N4=36, AD). Diffusion-tensor brain networks were compared across three disease stages: stage I 3(Control vs EMCI), stage II (Control vs LMCI) and stage III (Control vs AD). The group comparison was performed using the multivariate distance matrix regression analysis, a technique that was born in genomics and was recently proposed to handle brain functional networks, but here applied to diffusion-tensor data. The results were three-fold: First, no significant differences were found in stage I. Second, significant differences were found in stage II in the connectivity pattern of a subnetwork strongly associated to memory function (including part of the hippocampus, amygdala, entorhinal cortex, fusiform gyrus, inferior and middle temporal gyrus, parahippocampal gyrus and temporal pole). Third, a widespread disconnection across the entire AD brain was found in stage III, affecting more strongly the same memory subnetwork appearing in stage II, plus the other new subnetworks,including the default mode network, medial visual network, frontoparietal regions and striatum. Our results are consistent with a scenario where progressive alterations of connectivity arise as the disease severity increases and provide the brain areas possibly involved in such a degenerative process. Further studies applying the same strategy to longitudinal data are needed to fully confirm this scenario.


Sign in / Sign up

Export Citation Format

Share Document