Gut Microbiota and Alzheimer’s Disease: Experimental Evidence and Clinical Reality

2021 ◽  
Vol 18 ◽  
Author(s):  
Sarama Saha ◽  
Sukhpal Singh ◽  
Suvarna Prasad ◽  
Amit Mittal ◽  
Anil Kumar Sharma ◽  
...  

: Alzheimer’s disease (AD) is characterized by progressive death of neuronal cells in the regions of the brain concerned with memory and cognition, and is the major cause of dementia in the elderly population. Various molecular mechanisms, metabolic risk factors and environmental triggers contributing to the genesis and progression of AD are under intense investigations. The present review has dealt with the impact of a highly discussed topic of gut microbiota affecting the neurodegeneration in the AD brain. A detailed description of the composition of gut bacterial flora and its interaction with the host has been presented, followed by an analysis of key concepts of bi- directional communication between gut microbiota and the brain. The substantial experimental evidence of gut microbiota affecting the neurodegenerative process in experimental AD models has been described next in this review, and finally, the limitations of such experimental studies vis-a- vis the actual disease and the paucity of clinical data on this topic have also been mentioned.

2019 ◽  
Vol 240 (2) ◽  
pp. R47-R72 ◽  
Author(s):  
Lenka Maletínská ◽  
Andrea Popelová ◽  
Blanka Železná ◽  
Michal Bencze ◽  
Jaroslav Kuneš

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder in the elderly population. Numerous epidemiological and experimental studies have demonstrated that patients who suffer from obesity or type 2 diabetes mellitus have a higher risk of cognitive dysfunction and AD. Several recent studies demonstrated that food intake-lowering (anorexigenic) peptides have the potential to improve metabolic disorders and that they may also potentially be useful in the treatment of neurodegenerative diseases. In this review, the neuroprotective effects of anorexigenic peptides of both peripheral and central origins are discussed. Moreover, the role of leptin as a key modulator of energy homeostasis is discussed in relation to its interaction with anorexigenic peptides and their analogs in AD-like pathology. Although there is no perfect experimental model of human AD pathology, animal studies have already proven that anorexigenic peptides exhibit neuroprotective properties. This phenomenon is extremely important for the potential development of new drugs in view of the aging of the human population and of the significantly increasing incidence of AD.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1408
Author(s):  
Cecilia Flores-Clemente ◽  
María Inés Nicolás-Vázquez ◽  
Elvia Mera Jiménez ◽  
Maricarmen Hernández-Rodríguez

Alzheimer’s disease (AD) represents the principal cause of dementia among the elderly. Great efforts have been established to understand the physiopathology of AD. Changes in neurotransmitter systems in patients with AD, including cholinergic, GABAergic, serotoninergic, noradrenergic, and histaminergic changes have been reported. Interestingly, changes in the histaminergic system have been related to cognitive impairment in AD patients. The principal pathological changes in the brains of AD patients, related to the histaminergic system, are neurofibrillary degeneration of the tuberomammillary nucleus, the main source of histamine in the brain, low histamine levels, and altered signaling of its receptors. The increase of histamine levels can be achieved by inhibiting its degrading enzyme, histamine N-methyltransferase (HNMT), a cytoplasmatic enzyme located in astrocytes. Thus, increasing histamine levels could be employed in AD patients as co-therapy due to their effects on cognitive functions, neuroplasticity, neuronal survival, neurogenesis, and the degradation of amyloid beta (Aβ) peptides. In this sense, the evaluation of the impact of HNMT inhibitors on animal models of AD would be interesting, consequently highlighting its relevance.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1765 ◽  
Author(s):  
Vo Giau ◽  
Si Wu ◽  
Angelo Jamerlan ◽  
Seong An ◽  
SangYun Kim ◽  
...  

The bidirectional communication between the central nervous system (CNS) and the gut microbiota plays a pivotal role in human health. Increasing numbers of studies suggest that the gut microbiota can influence the brain and behavior of patients. Various metabolites secreted by the gut microbiota can affect the cognitive ability of patients diagnosed with neurodegenerative diseases. Nearly one in every ten Korean senior citizens suffers from Alzheimer’s disease (AD), the most common form of dementia. This review highlights the impact of metabolites from the gut microbiota on communication pathways between the brain and gut, as well as the neuroinflammatory roles they may have in AD patients. The objectives of this review are as follows: (1) to examine the role of the intestinal microbiota in homeostatic communication between the gut microbiota and the brain, termed the microbiota–gut–brain (MGB) axis; (2) to determine the underlying mechanisms of signal dysfunction; and (3) to assess the impact of signal dysfunction induced by the microbiota on AD. This review will aid in understanding the microbiota of elderly people and the neuroinflammatory roles they may have in AD.


2012 ◽  
Vol 25 (3) ◽  
pp. 341-344 ◽  
Author(s):  
David A. Scott ◽  
Brendan S. Silbert ◽  
Lisbeth A. Evered

It has long been observed that some patients suffer a significant cognitive impact following anesthesia and surgery. This should not be surprising when considering that not only is the target organ for general anesthetic agents the brain itself but also that the process of anesthesia is a form of deep, pharmacologically induced coma rather than “sleep.” The expectation that such a process should be fully reversible with transient neurophysiological effects contradicts our experience with repeated abuse of other central nervous system depressants such as glue, petrol, and alcohol. Of great concern is that, while approximately 10% of populations in developed countries undergo anesthesia and surgery of some form each year, the proportion of the elderly making up this group is much greater. In addition, it is the elderly who are potentially at a greater risk of cognitive impairment following such procedures because many have decreased cognitive reserve, either due to pre-existing mild cognitive impairment (MCI) or frank dementia, which may be diagnosed or unknown. The impact of anesthesia on these individuals is poorly understood, as are the implications of the emerging laboratory data that suggest an effect of anesthetic agents on the pathological processes of Alzheimer's Disease (AD) itself.


Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 34
Author(s):  
Mayumi Minamisawa ◽  
Yuma Sato ◽  
Eitarou Ishiguro ◽  
Tetsuyuki Taniai ◽  
Taiichi Sakamoto ◽  
...  

In this study, we observed disease progression, changes in the gut microbiota, and interactions among the brain, liver, pancreas, and intestine in a mouse model of Alzheimer’s disease (AD), in addition to attempting to inhibit disease progression through the dietary supplementation of L-arginine and limonoids. Wild-type mice (WC) and AD mice were fed a normal diet (AC), a diet supplemented with L-arginine and limonoids (ALA), or a diet containing only limonoids (AL) for 12–64 weeks. The normal diet-fed WC and AC mice showed a decrease in the diversity of the gut microbiota, with an increase in the Firmicutes/Bacteroidetes ratio, and bacterial translocation. Considerable bacterial translocation to the pancreas and intense inflammation of the pancreas, liver, brain, and intestinal tissues were observed in the AC mice from alterations in the gut microbiota. The ALA diet or AL diet-fed mice showed increased diversity of the bacterial flora and suppressed oxidative stress and inflammatory responses in hepatocytes and pancreatic cells, bacterial translocation, and neurodegeneration of the brain. These findings suggest that L-arginine and limonoids help in maintaining the homeostasis of the gut microbiota, pancreas, liver, brain, and gut in AD mice.


2020 ◽  
Vol 57 (12) ◽  
pp. 5026-5043 ◽  
Author(s):  
Shan Liu ◽  
Jiguo Gao ◽  
Mingqin Zhu ◽  
Kangding Liu ◽  
Hong-Liang Zhang

Abstract Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.


2021 ◽  
Vol 20 ◽  
Author(s):  
Choy Ker Woon ◽  
Wong Kah Hui ◽  
Razif Abas ◽  
Muhammad Huzaimi Haron ◽  
Srijit Das ◽  
...  

: Alzheimer's disease (AD) affects the elderly and is characterized by progressive neurodegeneration caused by different pathologies. The most significant challenges in treating AD include the inability of medications to reach the brain because of its poor solubility, low bioavailability, and the presence of the blood-brain barrier (BBB). Additionally, current evidence suggests the disruption of BBB plays an important role in the pathogenesis of AD. One of the critical challenges in treating AD is the ineffective treatments and its severe adverse effects. Nanotechnology offers an alternative approach to facilitate the treatment of AD by overcoming the challenges in drug transport across the BBB. Various nanoparticles (NP) loaded with natural products were reported to aid in drug delivery for the treatment of AD. The nano- sized entities of NP are great platforms for incorporating active materials from natural products into formulations that can be delivered effectively to the intended action site without compromising the material’s bioactivity. The review highlights the applications of medicinal plants, their derived components, and various nanomedicine-based approaches for the treatment of AD. The combination of medicinal plants and nanotechnology may lead to new theragnostic solutions for the treatment of AD in the future.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Corona Solana ◽  
Raquel Tarazona ◽  
Rafael Solana

Alzheimer’s disease (AD) represents the most common cause of dementia in the elderly. AD is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although the aetiology of AD is not clear, both environmental factors and heritable predisposition may contribute to disease occurrence. In addition, inflammation and immune system alterations have been linked to AD. The prevailing hypothesis as cause of AD is the deposition in the brain of amyloid beta peptides (Aβ). Although Aβ have a role in defending the brain against infections, their accumulation promotes an inflammatory response mediated by microglia and astrocytes. The production of proinflammatory cytokines and other inflammatory mediators such as prostaglandins and complement factors favours the recruitment of peripheral immune cells further promoting neuroinflammation. Age-related inflammation and chronic infection with herpes virus such as cytomegalovirus may also contribute to inflammation in AD patients. Natural killer (NK) cells are innate lymphoid cells involved in host defence against viral infections and tumours. Once activated NK cells secrete cytokines such as IFN-γ and TNF-α and chemokines and exert cytotoxic activity against target cells. In the elderly, changes in NK cell compartment have been described which may contribute to the lower capacity of elderly individuals to respond to pathogens and tumours. Recently, the role of NK cells in the immunopathogenesis of AD is discussed. Although in AD patients the frequency of NK cells is not affected, a high NK cell response to cytokines has been described together with NK cell dysregulation of signalling pathways which is in part involved in this altered behaviour.


2021 ◽  
pp. 1-28
Author(s):  
Sirawit Sriwichaiin ◽  
Nipon Chattipakorn ◽  
Siriporn C. Chattipakorn

Alzheimer’s disease (AD) has become a major health problem among the elderly population. Some evidence suggests that metabolic disturbance possibly plays a role in the pathophysiology of AD. Currently, the study of metabolomics has been used to explore changes in multiple metabolites in several diseases, including AD. Thus, the metabolomics research in AD might provide some information regarding metabolic dysregulations, and their possible associated pathophysiology. This review summarizes the information discovered regarding the metabolites in the brain and the blood from the metabolomics research of AD from both animal and clinical studies. Additionally, the correlation between the changes in metabolites and outcomes, such as pathological findings in the brain and cognitive impairment are discussed. We also deliberate on the findings of cohort studies, demonstrating the alterations in metabolites before changes of cognitive function. All of these findings can be used to inform the potential identity of specific metabolites as possible biomarkers for AD.


2019 ◽  
Author(s):  
Min Wang ◽  
William Kwame Amakye ◽  
Jianing Cao ◽  
Congcong Gong ◽  
Xiaoyu Sun ◽  
...  

Abstract Background: Dysbiosis of gut microbiota is associated with the progression of beta-amyloid (Aβ) pathology in Alzheimer’s disease (AD). We aimed to identify uniform Aβ-responsible gut microbiota status as possible guideline for gut microbiota manipulation and the prediction of outcomes of microbiota targeted treatments. Six months old APP/PS1 mice from the same genetic background, housing and feeding conditions were then daily gavage with Metformin, peptides WN5 or PW5 to manipulate the gut microbiota for 12 weeks. Aβ pathology and gut microbiota were then explored and compared. Results: Fecal microbiota transplantation (FMT) from a 16 month old APP/PS1 mouse reconstituted the gut microbiota towards the donor and increased Aβ pathology in APP/PS1 mouse model. Metformin, peptides WN5 and PW5 all attenuated Aβ-plaque formation in APP/PS1 mouse model but each was associated with distinct gut microbiota status. No uniform gut microbiota pattern associated with Aβ pathology was found among different gut microbiota-targeted treatments. Conclusion: We found no uniform gut microbiota status associated with Aβ pathology suggesting gut microbiota status is not a suitable biomarker for AD diagnosis and treatment predictions. Alteration of gut microbiota in itself may not be sufficiently directly related to functional outcomes and might only be a shadow of deeper molecular mechanisms not fully understood. The findings here strongly suggested that the significance of gut microbiota alteration in disease pathology and treatment may have so far been over claimed and that interpretation of gut microbiota data should be done with utmost caution.


Sign in / Sign up

Export Citation Format

Share Document