scholarly journals Transposable elements contribute to regulatory hub stress-related long noncoding RNAs in Maize

2019 ◽  
Author(s):  
Yuanda Lv ◽  
Fengqin Hu ◽  
Yongfeng Zhou ◽  
Feilong Wu ◽  
Ling Zhou ◽  
...  

AbstractSeveral studies have mined short-read RNA sequencing datasets to identify lncRNAs, and others have focused on the function of individual lncRNA in abiotic stress response. However, our understanding of the complement, function and origin of long-non-coding RNA (lncRNAs) response to abiotic stress, especially transposon derived lncRNA (TE-lncRNA), is still in its infancy. To discover and study lncRNAs in maize (Zea mays ssp. mays), we utilized a dataset of 127 RNA sequencing samples that included PacBio fl-cDNA and total RNA-Seq datasets. Overall, we identified 23,309 candidate lncRNAs, 60% of which were identified in polyadenylated (polyA+) samples. The majority (65%) of the 23,309 lncRNAs had sequence similarity to transposable elements (TEs). Most had similarity to long-terminal-repeat retrotransposons from the Copia and Gypsy superfamilies, representing the high proportion of these elements in the genome, but class II, DNA transposons were enriched for lncRNAs relative to their genomic representation by 2-fold. By assessing the fraction of lncRNAs that respond to abiotic stresses like heat, cold, salt and drought, we identified 1,077 differentially expressed lncRNA transcripts. Their expression was correlated (r2=0.48) with their nearest gene, suggesting that lncRNAs are subject to some of the cis regulatory features as neighboring genes. By inferring co-expression networks across our large dataset, we found that 39 lncRNAs act as major hubs in co-expression networks, of which 18 appeared to be derived from TEs. These results suggest that lncRNAs, especially TE-lncRNAs, may play key regulatory roles in moderating abiotic responses.

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yuanda Lv ◽  
Fengqin Hu ◽  
Yongfeng Zhou ◽  
Feilong Wu ◽  
Brandon S. Gaut

Abstract Background Several studies have mined short-read RNA sequencing datasets to identify long non-coding RNAs (lncRNAs), and others have focused on the function of individual lncRNAs in abiotic stress response. However, our understanding of the complement, function and origin of lncRNAs – and especially transposon derived lncRNAs (TE-lncRNAs) - in response to abiotic stress is still in its infancy. Results We utilized a dataset of 127 RNA sequencing samples that included total RNA datasets and PacBio fl-cDNA data to discover lncRNAs in maize. Overall, we identified 23,309 candidate lncRNAs from polyA+ and total RNA samples, with a strong discovery bias within total RNA. The majority (65%) of the 23,309 lncRNAs had sequence similarity to transposable elements (TEs). Most had similarity to long-terminal-repeat retrotransposons from the Copia and Gypsy superfamilies, reflecting a high proportion of these elements in the genome. However, DNA transposons were enriched for lncRNAs relative to their genomic representation by ~ 2-fold. By assessing the fraction of lncRNAs that respond to abiotic stresses like heat, cold, salt and drought, we identified 1077 differentially expressed lncRNA transcripts, including 509 TE-lncRNAs. In general, the expression of these lncRNAs was significantly correlated with their nearest gene. By inferring co-expression networks across our large dataset, we found that 39 lncRNAs are as major hubs in co-expression networks that respond to abiotic stress, and 18 appear to be derived from TEs. Conclusions Our results show that lncRNAs are enriched in total RNA samples, that most (65%) are derived from TEs, that at least 1077 are differentially expressed during abiotic stress, and that 39 are hubs in co-expression networks, including a small number that are evolutionary conserved. These results suggest that lncRNAs, including TE-lncRNAs, may play key regulatory roles in moderating abiotic responses.


2021 ◽  
Author(s):  
Calla L. Telzrow ◽  
Paul J. Zwack ◽  
Shannon Esher Righi ◽  
Fred S. Dietrich ◽  
Cliburn Chan ◽  
...  

ABSTRACTRibosomal RNA (rRNA) is the major RNA constituent of cells, therefore most RNA sequencing (RNA-Seq) experiments involve removal of rRNA. This process, called RNA enrichment, is done primarily to reduce cost: without rRNA removal, deeper sequencing would need to be performed to balance the sequencing reads wasted on rRNA. The ideal RNA enrichment method would remove all rRNA without affecting other RNA in the sample. We have tested the performance of three RNA enrichment methods on RNA isolated from Cryptococcus neoformans, a fungal pathogen of humans. We show that the RNase H depletion method unambiguously outperforms the commonly used Poly(A) isolation method: the RNase H method more efficiently depletes rRNA while more accurately recapitulating the expression levels of other RNA observed in an unenriched “gold standard”. The RNase H depletion method is also superior to the Ribo-Zero depletion method as measured by rRNA depletion efficiency and recapitulation of protein-coding gene expression levels, while the Ribo-Zero depletion method performs moderately better in preserving non-coding RNA (ncRNA). Finally, we have leveraged this dataset to identify novel long non-coding RNA (lncRNA) genes and to accurately map the C. neoformans mitochondrial rRNA genes.ARTICLE SUMMARYWe compare the efficacy of three different RNA enrichment methods for RNA-Seq in Cryptococcus neoformans: RNase H depletion, Ribo-Zero depletion, and Poly(A) isolation. We show that the RNase H depletion method, which is evaluated in C. neoformans samples for the first time here, is highly efficient and specific in removing rRNA. Additionally, using data generated through these analyses, we identify novel long non-coding RNA genes in C. neoformans. We conclude that RNase H depletion is an effective and reliable method for preparation of C. neoformans RNA-Seq libraries.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 364 ◽  
Author(s):  
Jakada ◽  
Aslam ◽  
Fakher ◽  
Greaves ◽  
Li ◽  
...  

Chromatin remodeling complex orchestrates numerous aspects of growth and development in eukaryotes. SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is a member of the SWI/SNF ATPase-containing chromatin remodeling complex responsible for the exchange of H2A for H2A.Z. In plants, SWR1-C plays a crucial role by transcriptionally regulating numerous biological and developmental processes. However, SWR1-C activity remains obscure in pineapple. Here, we aim to identify the SWR1-C subunits in pineapple. By genome-wide identification, we found a total of 11 SWR1-C subunits in the pineapple. The identified SWR1-C subunits were named and classified based on the sequence similarity and phylogenetic analysis. RNA-Seq analysis showed that pineapple SWR1-C subunits are expressed differentially in different organs and at different stages. Additionally, the qRT-PCR of pineapple SWR1-C subunits during abiotic stress exposure showed significant changes in their expression. We further investigated the functions of pineapple SWR1 COMPLEX 6 (AcSWC6) by ectopically expressing it in Arabidopsis. Interestingly, transgenic plants ectopically expressing AcSWC6 showed susceptibility to fungal infection and enhanced resistance to salt and osmotic stress, revealing its involvement in biotic and abiotic stress. Moreover, the complementation of mutant Arabidopsis swc6 by pineapple SWC6 suggested the conserved function of SWC6 in plants.


2020 ◽  
Author(s):  
Keisuke Katsushima ◽  
Bongyong Lee ◽  
Haritha Kunhiraman ◽  
Cuncong Zhong ◽  
Rabi Murath ◽  
...  

AbstractBackgroundMedulloblastoma (MB) is an aggressive brain tumor that predominantly affects children. Recent high-throughput sequencing studies suggest that the non-coding RNA genome, in particular long non-coding RNAs (lncRNAs), contributes to MB sub-grouping. Here we report the identification of a novel lncRNA, lnc-HLX-2-7, as a potential molecular marker and therapeutic target in group 3 MBs.MethodsPublicly available RNA sequencing (RNA-seq) data from 175 MB patients were interrogated to identify lncRNAs that differentiate between MB subgroups. After characterizing a subset of differentially expressed lncRNAs in vitro and in vivo, the group 3-enriched lncRNA lnc-HLX2-7 was deleted by CRISPR/Cas9 in the MB cell line D425 Med. Intracranially injected tumors were further characterized by bulk and single-cell RNA-sequencing.Resultslnc-HLX-2-7 is highly upregulated in group 3 MB cell lines, patient-derived xenografts, and primary MBs compared to other MB sub-groups as assessed by qRT-PCR, RNA-seq, and RNA fluorescence in situ hybridization (FISH). Depletion of lnc-HLX-2-7 with antisense oligonucleotides or CRISPR/Cas9 significantly reduced cell proliferation and 3D colony formation and induced apoptosis. lnc-HLX-2-7-deleted D425 Med cells injected into mouse cerebella produced smaller tumors than those derived from parental cells. Pathway analysis revealed that lnc-HLX2-7 modulated oxidative phosphorylation, mitochondrial dysfunction, and sirtuin signaling pathways. The MYC oncogene regulated lnc-HLX-2-7, and the small molecule BET-bromodomain (BRD4) inhibitor JQ1 reduced lnc-HLX2-7 expression.Conclusionslnc-HLX-2-7 is oncogenic in MB and represents a promising novel molecular marker and a potential therapeutic target in group 3 MBs in children.Key pointslnc-HLX-2-7 is highly upregulated in group 3 medulloblastomas compared to other sub-groups.In vitro and in vivo studies strongly support an oncogenic role for lnc-HLX2-7 in group 3 medulloblastoma.lnc-HLX-2-7 may be a novel biomarker and a potential therapeutic target in group 3 medulloblastoma.Importance of the studyGroup 3 medulloblastomas are associated with poor clinical outcomes, are difficult to subtype clinically, and their biology is poorly understood. In an effort to address these problems, we identified a group 3-specific long non-coding RNA, lnc-HLX-2-7, in an in silico analysis of 175 medulloblastomas and confirmed its expression in group 3 medulloblastoma cell lines, patient-derived xenografts, and FFPE samples. CRISPR/Cas9 deletion and antisense oligonucleotide knockdown of lnc-HLX-2-7 significantly reduced cell growth and 3D colony formation and induced apoptosis. Deletion of lnc-HLX-2-7 in cells injected into mouse cerebellums reduced tumor growth compared to parental cells, and RNA sequencing of these tumors revealed lnc-HLX-2-7-associated modulation of cell viability and cell death signaling pathways. The oncogene MYC regulates lnc-HLX-2-7, and its expression can be controlled by the BET-bromodomain (BRD4) inhibitor JQ1. lnc-HLX-2-7 is a candidate biomarker and a potential therapeutic target in group 3 medulloblastomas in children.


2020 ◽  
Author(s):  
Ni Wang ◽  
Yang Yu ◽  
Boming Xu ◽  
Chunmei Zhang ◽  
Jie Liu ◽  
...  

Abstract Background: Recently, long non-coding RNAs (lncRNAs) have been verified to have significant regulatory roles in multiple human cancer processes. Long non-coding RNA LINC00152, located on chromosome 2p11.2, was identified as an oncogenic lncRNA in various cancers. However, the biological function and molecular mechanism of LINC00152 in cholangiocarcinoma (CCA) are still unknown.Methods: Bioinformatic analysis was performed to determine LINC00152 expression levels in the CCA and normal tissues by using raw microarray data downloaded from Gene Expression Omnibus (GSE76297) and The Cancer Genome Atlas (TCGA). Quantitative reverse transcription PCR (qRT-PCR) was used to validate LINC00152 expression in the CCA tissues compared with that in the paired normal tissues. CCK8, colony formation, Edu assays, transwell assays, flow cytometry, and in vivo tumor formation assays were performed to investigate the biological function of LINC00152 on CCA cell phenotypes. RNA-seq was carried out to identify the downstream target gene which was further examined by qRT-PCR, western bolt and rescue experiments. RNA immunoprecipitation (RIP) and Chromatin immunoprecipitation (ChIP) assays were performed to reveal the factors involved in the mechanism of LINC00152 functions in CCA.Results: LINC00152 is significantly upregulated in cholangiocarcinoma. LINC00152 regulated the proliferation and migration of cholangiocarcinoma cells both in vitro and in vivo. RNA-seq revealed that LINC00152 knockdown preferentially affected genes linked with cell proliferation, cell differentiation and cell adhesion. Furthermore, mechanistic investigation validated that LINC00152 could bind EZH2 and modulate the histone methylation of promoter of leucine rich repeats and immunoglobulin like domains 1 (LRIG1), thereby affecting cholangiocarcinoma cells growth and migration.Conclusion: Taken together, these results demonstrated the significant roles of LINC00152 in cholangiocarcinoma and suggested a new diagnostic and therapeutic direction of cholangiocarcinoma.


2021 ◽  
Vol 8 ◽  
Author(s):  
Andrew Marete ◽  
Olivier Ariel ◽  
Eveline Ibeagha-Awemu ◽  
Nathalie Bissonnette

Mycobacterium avium ssp. paratuberculosis (MAP) causes chronic enteritis in most ruminants. The pathogen MAP causes Johne's disease (JD), a chronic, incurable, wasting disease. Weight loss, diarrhea, and a gradual drop in milk production characterize the disease's clinical phase, culminating in death. Several studies have characterized long non-coding RNA (lncRNA) in bovine tissues, and a previous study characterizes (lncRNA) in macrophages infected with MAP in vitro. In this study, we aim to characterize the lncRNA in macrophages from cows naturally infected with MAP. From 15 herds, feces and blood samples were collected for each cow older than 24 months, twice yearly over 3–5 years. Paired samples were analyzed by fecal PCR and blood ELISA. We used RNA-seq data to study lncRNA in macrophages from 33 JD(+) and 33 JD(–) dairy cows. We performed RNA-seq analysis using the “new Tuxedo” suite. We characterized lncRNA using logistic regression and multilayered neural networks and used DESeq2 for differential expression analysis and Panther and Reactome classification systems for gene ontology (GO) analysis. The study identified 13,301 lncRNA, 605 of which were novel lncRNA. We found seven genes close to differentially expressed lncRNA, including CCDC174, ERI1, FZD1, TWSG1, ZBTB38, ZNF814, and ZSCAN4. None of the genes associated with susceptibility to JD have been cited in the literature. LncRNA target genes were significantly enriched for biological process GO terms involved in immunity and nucleic acid regulation. These include the MyD88 pathway (TLR5), GO:0043312 (neutrophil degranulation), GO:0002446 (neutrophil-mediated immunity), and GO:0042119 (neutrophil activation). These results identified lncRNA with potential roles in host immunity and potential candidate genes and pathways through which lncRNA might function in response to MAP infection.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 997
Author(s):  
Pâmela A. Alexandre ◽  
Antonio Reverter ◽  
Roberta B. Berezin ◽  
Laercio R. Porto-Neto ◽  
Gabriela Ribeiro ◽  
...  

Long non-coding RNA (lncRNA) can regulate several aspects of gene expression, being associated with complex phenotypes in humans and livestock species. In taurine beef cattle, recent evidence points to the involvement of lncRNA in feed efficiency (FE), a proxy for increased productivity and sustainability. Here, we hypothesized specific regulatory roles of lncRNA in FE of indicine cattle. Using RNA-Seq data from the liver, muscle, hypothalamus, pituitary gland and adrenal gland from Nellore bulls with divergent FE, we submitted new transcripts to a series of filters to confidently predict lncRNA. Then, we identified lncRNA that were differentially expressed (DE) and/or key regulators of FE. Finally, we explored lncRNA genomic location and interactions with miRNA and mRNA to infer potential function. We were able to identify 126 relevant lncRNA for FE in Bos indicus, some with high homology to previously identified lncRNA in Bos taurus and some possible specific regulators of FE in indicine cattle. Moreover, lncRNA identified here were linked to previously described mechanisms related to FE in hypothalamus-pituitary-adrenal axis and are expected to help elucidate this complex phenotype. This study contributes to expanding the catalogue of lncRNA, particularly in indicine cattle, and identifies candidates for further studies in animal selection and management.


Sign in / Sign up

Export Citation Format

Share Document