scholarly journals Local Structure Awareness-Based Retinal Microaneurysm Detection with Multi-Feature Combination

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 124
Author(s):  
Jiakun Deng ◽  
Puying Tang ◽  
Xuegong Zhao ◽  
Tian Pu ◽  
Chao Qu ◽  
...  

Retinal microaneurysm (MA) is the initial symptom of diabetic retinopathy (DR). The automatic detection of MA is helpful to assist doctors in diagnosis and treatment. Previous algorithms focused on the features of the target itself; however, the local structural features of the target and background are also worth exploring. To achieve MA detection, an efficient local structure awareness-based retinal MA detection with the multi-feature combination (LSAMFC) is proposed in this paper. We propose a novel local structure feature called a ring gradient descriptor (RGD) to describe the structural differences between an object and its surrounding area. Then, a combination of RGD with the salience and texture features is used by a Gradient Boosting Decision Tree (GBDT) for candidate classification. We evaluate our algorithm on two public datasets, i.e., the e-ophtha MA dataset and retinopathy online challenge (ROC) dataset. The experimental results show that the performance of the trained model significantly improved after combining traditional features with RGD, and the area under the receiver operating characteristic curve (AUC) values in the test results of the datasets e-ophtha MA and ROC increased from 0.9615 to 0.9751 and from 0.9066 to 0.9409, respectively.

Author(s):  
Tao Duan ◽  
Zhufang Kuang ◽  
Jiaqi Wang ◽  
Zhihao Ma

In recent years, the long noncoding RNA (lncRNA) has been shown to be involved in many disease processes. The prediction of the lncRNA–disease association is helpful to clarify the mechanism of disease occurrence and bring some new methods of disease prevention and treatment. The current methods for predicting the potential lncRNA–disease association seldom consider the heterogeneous networks with complex node paths, and these methods have the problem of unbalanced positive and negative samples. To solve this problem, a method based on the Gradient Boosting Decision Tree (GBDT) and logistic regression (LR) to predict the lncRNA–disease association (GBDTLRL2D) is proposed in this paper. MetaGraph2Vec is used for feature learning, and negative sample sets are selected by using K-means clustering. The innovation of the GBDTLRL2D is that the clustering algorithm is used to select a representative negative sample set, and the use of MetaGraph2Vec can better retain the semantic and structural features in heterogeneous networks. The average area under the receiver operating characteristic curve (AUC) values of GBDTLRL2D obtained on the three datasets are 0.98, 0.98, and 0.96 in 10-fold cross-validation.


2020 ◽  
Author(s):  
Liyang Wang ◽  
Dantong Niu ◽  
Xiaoya Wang ◽  
Qun Shen ◽  
Yong Xue

AbstractStrategies to screen antihypertensive peptides with high throughput and rapid speed will be doubtlessly contributed to the treatment of hypertension. The food-derived antihypertensive peptides can reduce blood pressure without side effects. In present study, a novel model based on Extreme Gradient Boosting (XGBoost) algorithm was developed using the primary structural features of the food-derived peptides, and its performance in the prediction of antihypertensive peptides was compared with the dominating machine learning models. To further reflect the reliability of the method in real situation, the optimized XGBoost model was utilized to predict the antihypertensive degree of k-mer peptides cutting from 6 key proteins in bovine milk and the peptide-protein docking technology was introduced to verify the findings. The results showed that the XGBoost model achieved outstanding performance with the accuracy of 0.9841 and the area under the receiver operating characteristic curve of 0.9428, which were better than the other models. Using the XGBoost model, the prediction of antihypertensive peptides derived from milk protein was consistent with the peptide-protein docking results, and was more efficient. Our results indicate that using XGBoost algorithm as a novel auxiliary tool is feasible for screening antihypertensive peptide derived from food with high throughput and high efficiency.


2021 ◽  
pp. 1-12
Author(s):  
Xingchen Fan ◽  
Minmin Cao ◽  
Cheng Liu ◽  
Cheng Zhang ◽  
Chunyu Li ◽  
...  

BACKGROUND: MicroRNAs (miRNAs), with noticeable stability and unique expression pattern in plasma of patients with various diseases, are powerful non-invasive biomarkers for cancer detection including endometrial cancer (EC). OBJECTIVE: The objective of this study was to identify promising miRNA biomarkers in plasma to assist the clinical screening of EC. METHODS: A total of 93 EC and 79 normal control (NC) plasma samples were analyzed using Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) in this four-stage experiment. The receiver operating characteristic curve (ROC) analysis was conducted to evaluate the diagnostic value. Additionally, the expression features of the identified miRNAs were further explored in tissues and plasma exosomes samples. RESULTS: The expression of miR-142-3p, miR-146a-5p, and miR-151a-5p was significantly overexpressed in the plasma of EC patients compared with NCs. Areas under the ROC curve of the 3-miRNA signature were 0.729, 0.751, and 0.789 for the training, testing, and external validation phases, respectively. The diagnostic performance of the identified signature proved to be stable in the three public datasets and superior to the other miRNA biomarkers in EC diagnosis. Moreover, the expression of miR-151a-5p was significantly elevated in EC plasma exosomes. CONCLUSIONS: A signature consisting of 3 plasma miRNAs was identified and showed potential for the non-invasive diagnosis of EC.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1127
Author(s):  
Ji Hyung Nam ◽  
Dong Jun Oh ◽  
Sumin Lee ◽  
Hyun Joo Song ◽  
Yun Jeong Lim

Capsule endoscopy (CE) quality control requires an objective scoring system to evaluate the preparation of the small bowel (SB). We propose a deep learning algorithm to calculate SB cleansing scores and verify the algorithm’s performance. A 5-point scoring system based on clarity of mucosal visualization was used to develop the deep learning algorithm (400,000 frames; 280,000 for training and 120,000 for testing). External validation was performed using additional CE cases (n = 50), and average cleansing scores (1.0 to 5.0) calculated using the algorithm were compared to clinical grades (A to C) assigned by clinicians. Test results obtained using 120,000 frames exhibited 93% accuracy. The separate CE case exhibited substantial agreement between the deep learning algorithm scores and clinicians’ assessments (Cohen’s kappa: 0.672). In the external validation, the cleansing score decreased with worsening clinical grade (scores of 3.9, 3.2, and 2.5 for grades A, B, and C, respectively, p < 0.001). Receiver operating characteristic curve analysis revealed that a cleansing score cut-off of 2.95 indicated clinically adequate preparation. This algorithm provides an objective and automated cleansing score for evaluating SB preparation for CE. The results of this study will serve as clinical evidence supporting the practical use of deep learning algorithms for evaluating SB preparation quality.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Louis Ehwerhemuepha ◽  
Theodore Heyming ◽  
Rachel Marano ◽  
Mary Jane Piroutek ◽  
Antonio C. Arrieta ◽  
...  

AbstractThis study was designed to develop and validate an early warning system for sepsis based on a predictive model of critical decompensation. Data from the electronic medical records for 537,837 visits to a pediatric Emergency Department (ED) from March 2013 to December 2019 were collected. A multiclass stochastic gradient boosting model was built to identify early warning signs associated with death, severe sepsis, non-severe sepsis, and bacteremia. Model features included triage vital signs, previous diagnoses, medications, and healthcare utilizations within 6 months of the index ED visit. There were 483 patients who had severe sepsis and/or died, 1102 had non-severe sepsis, 1103 had positive bacteremia tests, and the remaining had none of the events. The most important predictors were age, heart rate, length of stay of previous hospitalizations, temperature, systolic blood pressure, and prior sepsis. The one-versus-all area under the receiver operator characteristic curve (AUROC) were 0.979 (0.967, 0.991), 0.990 (0.985, 0.995), 0.976 (0.972, 0.981), and 0.968 (0.962, 0.974) for death, severe sepsis, non-severe sepsis, and bacteremia without sepsis respectively. The multi-class macro average AUROC and area under the precision recall curve were 0.977 and 0.316 respectively. The study findings were used to develop an automated early warning decision tool for sepsis. Implementation of this model in pediatric EDs will allow sepsis-related critical decompensation to be predicted accurately after a few seconds of triage.


RSC Advances ◽  
2016 ◽  
Vol 6 (48) ◽  
pp. 42120-42131 ◽  
Author(s):  
Nicola Giummarella ◽  
Liming Zhang ◽  
Gunnar Henriksson ◽  
Martin Lawoko

Characterization of novel lignin carbohydrate complexes (LCC) unveils structural differences of relevance to fundamental and applied science.


2020 ◽  
Author(s):  
Zhanyou Xu ◽  
Andreomar Kurek ◽  
Steven B. Cannon ◽  
Williams D. Beavis

AbstractSelection of markers linked to alleles at quantitative trait loci (QTL) for tolerance to Iron Deficiency Chlorosis (IDC) has not been successful. Genomic selection has been advocated for continuous numeric traits such as yield and plant height. For ordinal data types such as IDC, genomic prediction models have not been systematically compared. The objectives of research reported in this manuscript were to evaluate the most commonly used genomic prediction method, ridge regression and it’s equivalent logistic ridge regression method, with algorithmic modeling methods including random forest, gradient boosting, support vector machine, K-nearest neighbors, Naïve Bayes, and artificial neural network using the usual comparator metric of prediction accuracy. In addition we compared the methods using metrics of greater importance for decisions about selecting and culling lines for use in variety development and genetic improvement projects. These metrics include specificity, sensitivity, precision, decision accuracy, and area under the receiver operating characteristic curve. We found that Support Vector Machine provided the best specificity for culling IDC susceptible lines, while Random Forest GP models provided the best combined set of decision metrics for retaining IDC tolerant and culling IDC susceptible lines.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ruixia Cui ◽  
Wenbo Hua ◽  
Kai Qu ◽  
Heran Yang ◽  
Yingmu Tong ◽  
...  

Sepsis-associated coagulation dysfunction greatly increases the mortality of sepsis. Irregular clinical time-series data remains a major challenge for AI medical applications. To early detect and manage sepsis-induced coagulopathy (SIC) and sepsis-associated disseminated intravascular coagulation (DIC), we developed an interpretable real-time sequential warning model toward real-world irregular data. Eight machine learning models including novel algorithms were devised to detect SIC and sepsis-associated DIC 8n (1 ≤ n ≤ 6) hours prior to its onset. Models were developed on Xi'an Jiaotong University Medical College (XJTUMC) and verified on Beth Israel Deaconess Medical Center (BIDMC). A total of 12,154 SIC and 7,878 International Society on Thrombosis and Haemostasis (ISTH) overt-DIC labels were annotated according to the SIC and ISTH overt-DIC scoring systems in train set. The area under the receiver operating characteristic curve (AUROC) were used as model evaluation metrics. The eXtreme Gradient Boosting (XGBoost) model can predict SIC and sepsis-associated DIC events up to 48 h earlier with an AUROC of 0.929 and 0.910, respectively, and even reached 0.973 and 0.955 at 8 h earlier, achieving the highest performance to date. The novel ODE-RNN model achieved continuous prediction at arbitrary time points, and with an AUROC of 0.962 and 0.936 for SIC and DIC predicted 8 h earlier, respectively. In conclusion, our model can predict the sepsis-associated SIC and DIC onset up to 48 h in advance, which helps maximize the time window for early management by physicians.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6661
Author(s):  
Vladimir Anatolyevich Markov ◽  
Bowen Sa ◽  
Sergey Nikolaevich Devyanin ◽  
Anatoly Anatolyevich Zherdev ◽  
Pablo Ramon Vallejo Maldonado ◽  
...  

The article discusses the possibility of using blended biofuels from rapeseed oil (RO) as fuel for a diesel engine. RO blended diesel fuel (DF) and emulsified multicomponent biofuels have been investigated. Fuel physicochemical properties have been analyzed. Experimental tests of a diesel engine D-245 in the operating conditions of the external characteristic curve and the 13-mode test cycle have been conducted to investigate the effect of these fuels on engine performances. CFD simulations of the nozzle inner flow were performed for DF and ethanol-emulsified RO. The possibility of a significant improvement in brake thermal efficiency of the engine has been noted. The efficiency of using blended biofuels from RO as a motor fuel for diesel engines has been evaluated based on the experimental test results. It was shown that in comparison with the presence of RO in emulsified multicomponent biofuel, the presence of water has a more significant effect on NOx emission reduction. The content of RO and the content of water in the investigated emulsified fuels have a comparable influence on exhaust smoke reduction. Nozzle inner flow simulations show that the emulsification of RO changes its flow behaviors and cavitation regime.


Author(s):  
Oguz Akbilgic ◽  
Liam Butler ◽  
Ibrahim Karabayir ◽  
Patricia P Chang ◽  
Dalane W Kitzman ◽  
...  

Abstract Aims Heart failure (HF) is a leading cause of death. Early intervention is the key to reduce HF-related morbidity and mortality. This study assesses the utility of electrocardiograms (ECGs) in HF risk prediction. Methods and results Data from the baseline visits (1987–89) of the Atherosclerosis Risk in Communities (ARIC) study was used. Incident hospitalized HF events were ascertained by ICD codes. Participants with good quality baseline ECGs were included. Participants with prevalent HF were excluded. ECG-artificial intelligence (AI) model to predict HF was created as a deep residual convolutional neural network (CNN) utilizing standard 12-lead ECG. The area under the receiver operating characteristic curve (AUC) was used to evaluate prediction models including (CNN), light gradient boosting machines (LGBM), and Cox proportional hazards regression. A total of 14 613 (45% male, 73% of white, mean age ± standard deviation of 54 ± 5) participants were eligible. A total of 803 (5.5%) participants developed HF within 10 years from baseline. Convolutional neural network utilizing solely ECG achieved an AUC of 0.756 (0.717–0.795) on the hold-out test data. ARIC and Framingham Heart Study (FHS) HF risk calculators yielded AUC of 0.802 (0.750–0.850) and 0.780 (0.740–0.830). The highest AUC of 0.818 (0.778–0.859) was obtained when ECG-AI model output, age, gender, race, body mass index, smoking status, prevalent coronary heart disease, diabetes mellitus, systolic blood pressure, and heart rate were used as predictors of HF within LGBM. The ECG-AI model output was the most important predictor of HF. Conclusions ECG-AI model based solely on information extracted from ECG independently predicts HF with accuracy comparable to existing FHS and ARIC risk calculators.


Sign in / Sign up

Export Citation Format

Share Document