scholarly journals In Vitro Evaluation of a Nanoparticle-Based mRNA Delivery System for Cells in the Joint

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 794
Author(s):  
Lisa Sturm ◽  
Bettina Schwemberger ◽  
Ursula Menzel ◽  
Sonja Häckel ◽  
Christoph E. Albers ◽  
...  

Biodegradable and bioresponsive polymer-based nanoparticles (NPs) can be used for oligonucleotide delivery, making them a promising candidate for mRNA-based therapeutics. In this study, we evaluated and optimized the efficiency of a cationic, hyperbranched poly(amidoamine)s-based nanoparticle system to deliver tdTomato mRNA to primary human bone marrow stromal cells (hBMSC), human synovial derived stem cells (hSDSC), bovine chondrocytes (bCH), and rat tendon derived stem/progenitor cells (rTDSPC). Transfection efficiencies varied among the cell types tested (bCH 28.4% ± 22.87, rTDSPC 18.13% ± 12.07, hBMSC 18.23% ± 14.80, hSDSC 26.63% ± 8.81) and while an increase of NPs with a constant amount of mRNA generally improved the transfection efficiency, an increase of the mRNA loading ratio (2:50, 4:50, or 6:50 w/w mRNA:NPs) had no impact. However, metabolic activity of bCHs and rTDSPCs was significantly reduced when using higher amounts of NPs, indicating a dose-dependent cytotoxic response. Finally, we demonstrate the feasibility of transfecting extracellular matrix-rich 3D cell culture constructs using the nanoparticle system, making it a promising transfection strategy for musculoskeletal tissues that exhibit a complex, dense extracellular matrix.

2021 ◽  
Author(s):  
Mattia Saggioro ◽  
Stefania D'Agostino ◽  
Anna Gallo ◽  
Sara Crotti ◽  
Sara D'Aronco ◽  
...  

Three-dimensional (3D) culture systems are progressively getting attention given their potential in overcoming limitations of the classical 2D in vitro systems. Among different supports for 3D cell culture, hydrogels (HGs)...


2005 ◽  
Vol 94 (11) ◽  
pp. 1004-1011 ◽  
Author(s):  
Frédéric Adam ◽  
Shilun Zheng ◽  
Nilesh Joshi ◽  
David Kelton ◽  
Amin Sandhu ◽  
...  

SummaryMultimerin 1 (MMRN1) is a large, soluble, polymeric, factor V binding protein and member of the EMILIN protein family.In vivo, MMRN1 is found in platelets, megakaryocytes, endothelium and extracellular matrix fibers, but not in plasma. To address the mechanism of MMRN1 binding to activated platelets and endothelial cells, we investigated the identity of the major MMRN1 receptors on these cells using wild-type and RGE-forms of recombinant MMRN1. Ligand capture, cell adhesion, ELISA and flow cytometry analyses of platelet-MMRN1 binding, indicated that MMRN1 binds to integrins αIIbβ3 and αvβ3. Endothelial cell binding to MMRN1 was predominantly mediated by αvβ3 and did not require the MMRN1 RGD site or cellular activation. Like many other αvβ3 ligands, MMRN1 had the ability to support adhesion of additional cell types, including stimulated neutrophils. Expression studies, using a cell line capable of endothelial-like MMRN1 processing, indicated that MMRN1 adhesion to cellular receptors enhanced its extracellular matrix fiber assembly. These studies implicate integrin-mediated binding in MMRN1 attachment to cells and indicate that MMRN1 is a ligand for αIIbβ3 and αvβ3.


2018 ◽  
Vol 115 (19) ◽  
pp. 4903-4908 ◽  
Author(s):  
Hong-Xia Wang ◽  
Ziyuan Song ◽  
Yeh-Hsing Lao ◽  
Xin Xu ◽  
Jing Gong ◽  
...  

Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-l-glutamate) for the delivery of Cas9 expression plasmid and sgRNA to various cell types and gene-editing scenarios. The cell-penetrating α-helical polypeptide enhanced cellular uptake and promoted escape of pCas9 and/or sgRNA from the endosome and transport into the nucleus. The colloidally stable P-HNPs achieved a Cas9 transfection efficiency up to 60% and sgRNA uptake efficiency of 67.4%, representing an improvement over existing polycation-based gene delivery systems. After performing single or multiplex gene editing with an efficiency up to 47.3% in vitro, we demonstrated that P-HNPs delivering Cas9 plasmid/sgRNA targeting the polo-like kinase 1 (Plk1) gene achieved 35% gene deletion in HeLa tumor tissue to reduce the Plk1 protein level by 66.7%, thereby suppressing the tumor growth by >71% and prolonging the animal survival rate to 60% within 60 days. Capable of delivering Cas9 plasmids to various cell types to achieve multiplex gene knock-out, gene knock-in, and gene activation in vitro and in vivo, the P-HNP system offers a versatile gene-editing platform for biological research and therapeutic applications.


2018 ◽  
Vol 2 (S1) ◽  
pp. 11-12
Author(s):  
Mark H. Murdock ◽  
Jordan T. Chang ◽  
George S. Hussey ◽  
Nduka M. Amankulor ◽  
Johnathan A. Engh ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Gliomas are the most lethal and common primary tumor type in the central nervous system across all age groups; affected adults have a life expectancy of just 14 months. As glioma cells invade the surrounding normal parenchyma they remodel the composition and ultrastructure of the surrounding extracellular matrix (ECM), suggesting that the native (i.e., “normal”) microenvironment is not ideal for their survival and proliferation. Recent reports describe suppressive and/or lethal effects of mammalian ECM hydrogels derived from normal (nonneoplastic) sources upon various cancer types. ECM-based bioscaffolds placed at sites of neoplastic tissue resection in humans have never been reported to facilitate cancer recurrence. The objective of the present research is to evaluate mammalian ECM as a novel approach to glioma therapy. METHODS/STUDY POPULATION: ECM hydrogels from porcine dermis, small intestine, and urinary bladder were produced as described previously. Primary glioma cells were graciously supplied by Drs. Nduka Amankulor and Johnathan Engh, and U-87 MG were ordered through ATCC. Cells were plated onto tissue culture plastic at ~60% confluence and allowed to attach for 24 hours before treatment. The saline-soluble fraction (SSF) of ECM was obtained by mixing lyophilized, comminuted ECM with 0.9% saline for 24 hours then filtering the resulting mixture through a 10 kDa molecular weight cutoff column. All assays and kits were followed according to the manufacturer’s instructions. Cell viability was measured via MTT assay (Vybrant® MTT Cell Proliferation Assay, Invitrogen) and by live/dead staining (LIVE/DEAD® Cell Imaging Kit, Invitrogen). Time lapse videos were created by taking images every 20 minutes for 18 hours (phase-contrast) or every 10 minutes for 12 hours (darkfield). NucView reagent was ordered from Biotium. Temozolomide was ordered through Abmole. All in vivo work was conducted according to protocols approved by the University of Pittsburgh’s IACUC office. RESULTS/ANTICIPATED RESULTS: ECM hydrogels derived from porcine dermis, small intestine, or urinary bladder all decreased the viability of primary glioma cells in vitro, with urinary bladder extracellular matrix (UBM) having the most dramatic effects. The SSF of UBM (UBM-SSF), devoid of the fibrillar, macromolecular components of ECM, was sufficient to recapitulate this detrimental effect upon neoplastic cells in vitro and was used for the remainder of the experiments described herein. In a cell viability assay normalized to the media treatment, non-neoplastic CHME5 and N1E-115 cells scored 103% and 114% after 48 hours when treated with UBM-SSF and 2 primary high-grade glioma cell types scored 17% and 30.5% with UBM-SSF (n=2). Phase-contrast time-lapse video showed CHME5 and HFF thriving in the presence of UBM-SSF for 18 hours while most primary glioma cells shriveled and died within this time. Darkfield time-lapse video of wells containing Nucview dye, fluorescent upon cleavage by active caspase-3, confirmed that within 12 hours most primary glioma cells underwent apoptosis while CHME5 and HFF did not. In culture with primary astrocytes, high grade primary glioma cells, and U-87 MG glioma cells for 24 hours, UBM-SSF was found to significantly increase the population of primary astrocytes compared with media (p<0.05) while decreasing the 2 glioma cell types to approximately one-third as many cells as the media control (p<0.0001). A dose-response of temozolomide from 0 to 10,000 μM showed that when treating 2 non-neoplastic cell types (CHME5 and HFF) and 2 types of primary glioma cell there was no difference in survivability at any concentration. Contrasted to this, a dose-response of UBM-SSF from 350 to 7000 μg/mL showed that the non-neoplastic cells survived significantly better than the glioma cells at concentrations of 875 μg/mL and upward (p<0.05). In preliminary animal experiments, large primary glioma tumors in the flanks of athymic nude mice were resected and replaced with either UBM SSF or Matrigel (an ECM product of neoplastic cell origin). After 7 days the resection sites with UBM-SSF had little tumor regrowth if any compared with the dramatic recurrence seen in the Matrigel injection sites (n=2). In a separate survival study comparing PBS to UBM-SSF injections in the flank-resection model, all animals given PBS had to be sacrificed at 9, 11, and 11 days (n=3) whereas animals given UBM-SSF were sacrificed at 15, 24, and 39 days (n=3), indicating a moderate increase in survival due to the UBM-SSF. DISCUSSION/SIGNIFICANCE OF IMPACT: Since the introduction of the pan-cytotoxic chemotherapeutic agent TMZ in 2005, the standard of care for patients with glioblastoma multiforme has not improved. These findings indicate that non-neoplastic ECM contains potent bioactive regulators capable of abrogating malignancy. Our in vitro data suggest these molecules appear to have no deleterious effect on non-neoplastic cells while specifically inducing apoptosis in glioma cells. Our in vivo data suggest that these molecules may be useful in delaying glioma recurrence, thus resulting in extended lifespan. Delivering soluble fractions of ECM to a tumor site may represent a novel approach to glioma therapy, sidestepping traditional cytotoxic therapies in favor of utilizing putative endogenous anti-tumor pathways.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1724
Author(s):  
Gry H. Dihazi ◽  
Marwa Eltoweissy ◽  
Olaf Jahn ◽  
Björn Tampe ◽  
Michael Zeisberg ◽  
...  

The secretome is an important mediator in the permanent process of reciprocity between cells and their environment. Components of secretome are involved in a large number of physiological mechanisms including differentiation, migration, and extracellular matrix modulation. Alteration in secretome composition may therefore trigger cell transformation, inflammation, and diseases. In the kidney, aberrant protein secretion plays a central role in cell activation and transition and in promoting renal fibrosis onset and progression. Using comparative proteomic analyses, we investigated in the present study the impact of cell transition on renal fibroblast cells secretome. Human renal cell lines were stimulated with profibrotic hormones and cytokines, and alterations in secretome were investigated using proteomic approaches. We identified protein signatures specific for the fibrotic phenotype and investigated the impact of modeling secretome proteins on extra cellular matrix accumulation. The secretion of peptidyl-prolyl cis-trans isomerase A (PPIA) was demonstrated to be associated with fibrosis phenotype. We showed that the in-vitro inhibition of PPIA with ciclosporin A (CsA) resulted in downregulation of PPIA and fibronectin (FN1) expression and significantly reduced their secretion. Knockdown studies of PPIA in a three-dimensional (3D) cell culture model significantly impaired the secretion and accumulation of the extracellular matrix (ECM), suggesting a positive therapeutic effect on renal fibrosis progression.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Julie Williams ◽  
Sanlin Robinson ◽  
Babak Alaei ◽  
Kimberly Homan ◽  
Maryam Clausen ◽  
...  

Abstract Background and Aims Questions abound regarding the translation of in vitro 2D cell culture systems to the human setting. This is especially true of the kidney in which there is a complex hierarchical structure and a multitude of cell types. While it is well accepted that extracellular matrix plays a large part in directing cellular physiology emerging research has highlighted the importance of shear stresses and flow rates too. To fully recapitulate the normal gene expression and function of a particular renal cell type how important is it to completely reconstitute their in vivo surroundings? Method To answer this question, we have cultured proximal tubular (PT) epithelial cells in a 3-dimensional channel embedded within an engineered extracellular matrix (ECM) under physiological flow that is colocalised with an adjacent channel lined with renal microvascular endothelial cells that mimic a peritubular capillary. Modifications to the system were made to allow up to 12 chips to be run in parallel in an easily handleable form. After a period of maturation under continuous flow, both cell types were harvested for RNAseq analyses. RNA expression data was compared with cells cultured under static 2-dimensional conditions on plastic or the engineered ECM. Additionally, the perfusion of glucose through this 3D vascularised PT model has been investigated in the presence and absence of known diabetes modulating agents. Results PCA of RNAseq data showed that a) static non-coated, b) static matrix-coated and c) flow matrix-coated conditions separated into 3 distinct groups, while cell co-culture had less impact. Analysis of transcriptomic signatures showed that many genes were modulated by the matrix with additional genes influenced under flow conditions. Several of these genes, classified as transporters, are of particular importance when using this model to assess drug uptake and safety implications. Co-culture regulated some interesting genes, but fewer than anticipated. Preliminary experiments are underway to monitor glucose uptake and transport between tubules under different conditions. Conclusion We have developed a medium throughput system in which matrix and flow modulate gene expression. This system can be used to study the physiology of molecular cross-talk between cells. Ongoing analysis will further consider relevance to human physiology.


2016 ◽  
Vol 69 (3) ◽  
pp. 349 ◽  
Author(s):  
Yucheng Liu ◽  
Shufeng Li ◽  
Liandong Feng ◽  
Hao Yu ◽  
Xiaoliang Qi ◽  
...  

Poly(β-amino ester)s (PBAEs) have been proved to effectively transfer DNA to various cell types. However, PBAEs with high molecular weights also show considerable toxicities, partly resulting from inadequate degradation of their polyester backbone. In this study, we created novel poly(β-amino ester)s (SF-1, 2, 3, and 4; notation SFs refers to all the four polymers) which were characterised by the cleavable disulfide bonds. Moreover, a new technique, termed magnetofection that uses magnetic nanoparticles to enhance gene expression, has recently been well developed. The negatively charged magnetic nanoparticles (MNPs) with good biocompatibility in vitro were prepared here to subsequently combine with SFs and DNA via electrostatic interaction, leading to the formation of the magnetic gene complexes MNP/SFs/DNA. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays and transfection experiments were performed in A549 cells to investigate all the resulting complexes. Studies indicated that the synthesised PBAEs exhibited good biodegradation and regulated release of DNA as a result of the reductive cleavage of the disulfide bonds, giving higher transfection efficiency along with much lower cytotoxicity compared with commercially available transfection agent polyethylenimine (Mw 25 kDa). Furthermore, when MNP was involved at a MNP/DNA weight ratio of 0.5, the magnetic gene complexes MNP/SFs/DNA showed enhanced levels of gene expression while maintaining low cytotoxicity.


Author(s):  
Maria Veronica Lipreri ◽  
Nicola Baldini ◽  
Gabriela Graziani ◽  
Sofia Avnet

As life expectancy increases, the population experiences progressive ageing. Ageing, in turn, is connected to an increase in bone-related diseases (i.e., osteoporosis and increased risk of fractures). Hence, the search for new approaches to study the occurrence of bone-related diseases and to develop new drugs for their prevention and treatment becomes more pressing. However, to date, a reliable in vitro model that can fully recapitulate the characteristics of bone tissue, either in physiological or altered conditions, is not available. Indeed, current methods for modelling normal and pathological bone are poor predictors of treatment outcomes in humans, as they fail to mimic the in vivo cellular microenvironment and tissue complexity. Bone, in fact, is a dynamic network including differently specialized cells and the extracellular matrix, constantly subjected to external and internal stimuli. To this regard, perfused vascularized models are a novel field of investigation that can offer a new technological approach to overcome the limitations of traditional cell culture methods. It allows the combination of perfusion, mechanical and biochemical stimuli, biological cues, biomaterials (mimicking the extracellular matrix of bone), and multiple cell types. This review will discuss macro, milli, and microscale perfused devices designed to model bone structure and microenvironment, focusing on the role of perfusion and encompassing different degrees of complexity. These devices are a very first, though promising, step for the development of 3D in vitro platforms for preclinical screening of novel anabolic or anti-catabolic therapeutic approaches to improve bone health.


2020 ◽  
Author(s):  
Namrata Singh ◽  
Komal Patel ◽  
Ambuja Navalkar ◽  
Pradeep Kadu ◽  
Debalina Datta ◽  
...  

AbstractBiomaterials mimicking extracellular matrices (ECM) for three-dimensional (3D) cultures have gained immense interest in tumor modeling and in vitro organ development. Here, we introduce versatile, thixotropic amyloid hydrogels as a bio-mimetic ECM scaffold for 3D cell culture as well as high-throughput tumor spheroid formation using a drop cast method. The unique cross-β-sheet structure, sticky surface, and thixotropicity of amyloid hydrogels allow robust cell adhesion, survival, proliferation, and migration, which are essential for 3D tumor modeling with various cancer cell types. The spheroids formed show overexpression of the signature cancer biomarkers and confer higher drug resistance compared to two-dimensional (2D) monolayer cultures. Using breast tumor tissue from mouse xenograft, we showed that these hydrogels support the formation of tumor spheroids with a well-defined necrotic core, cancer-associated gene expression, higher drug resistance, and tumor heterogeneity reminiscent of the original tumor. Altogether, we have developed a rapid and cost-effective platform for generating in vitro cancer models for the screening of anti-cancer therapeutics and developing personalized medicines.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2040 ◽  
Author(s):  
Jelena Kolosnjaj-Tabi ◽  
Slavko Kralj ◽  
Elena Griseti ◽  
Sebastjan Nemec ◽  
Claire Wilhelm ◽  
...  

Cancerous cells and the tumor microenvironment are among key elements involved in cancer development, progression, and resistance to treatment. In order to tackle the cells and the extracellular matrix, we herein propose the use of a class of silica-coated iron oxide nanochains, which have superior magnetic responsiveness and can act as efficient photothermal agents. When internalized by different cancer cell lines and normal (non-cancerous) cells, the nanochains are not toxic, as assessed on 2D and 3D cell culture models. Yet, upon irradiation with near infrared light, the nanochains become efficient cytotoxic photothermal agents. Besides, not only do they generate hyperthermia, which effectively eradicates tumor cells in vitro, but they also locally melt the collagen matrix, as we evidence in real-time, using engineered cell sheets with self-secreted extracellular matrix. By simultaneously acting as physical (magnetic and photothermal) effectors and chemical delivery systems, the nanochain-based platforms offer original multimodal possibilities for prospective cancer treatment, affecting both the cells and the extracellular matrix.


Sign in / Sign up

Export Citation Format

Share Document